Tektronix[®]

Advanced Power Measurement and Analysis

4/5/6 Series MSO Option 4-PWR-BAS, 4-PWR, 5-PWR, and 6-PWR Application Datasheet

Get more visibility into your power supply designs

Get more visibility into your power systems with Advanced Power Measurement and Analysis on the 4/5/6 Series MSO. The combination of the oscilloscope, analysis software, and a wide range of available voltage and current probes, enables you to perform automated, accurate power system measurements even if you are not a power conversion guru. The 12-bit analog-to-digital converters in these oscilloscopes deliver high-precision measurement data, and the pinch/ swipe/zoom touch interface makes it easy to manage measurements. A rich set of graphical power analysis tools, high channel-counts, and large HD displays deliver a comprehensive view of your power system. The instruments support a wide range of voltage and current probes, including state-of-the-art IsoVu[™] optically isolated voltage probes. The unmatched common mode rejection of IsoVu probes and the automation of Advanced Power Measurement and Analysis make an unbeatable combination for optimizing the latest GaN and SiC designs.

Key measurements

Input measurements

- **Power** measures true power, apparent power, power factor, and phase angle
- Total Harmonic Distortion and Crest Factor measurements
- · Harmonics measurements, bar charts, and tables
- Amplitude provides easy per-cycle measurements of voltage or current, including minimum, maximum, amplitude, and peak-topeak
- Input Capacitance measures the capacitance value using voltage and current signals
- Inrush Current measures the peak current
- Switching Device measurements
 - Switching Loss measures turn-on, turn-off, and conduction loss in switching devices
 - Safe Operating Area (SOA) provides customizable safe operating area mask testing
 - Timing Analysis enables easy analysis of pulse-widthmodulated switching signals with cycle-by-cycle plots or histograms of pulse width, duty cycle, frequency, or period
 - **RDS(on)** measures the dynamic resistance of the switching device when it is in the On state
- Magnetic Analysis measurements (available only in 4/5/6-PWR)
 - Inductance measures inductance of the core
 - Magnetic Property measures and plots the inductor B H curve.
 - Magnetic Loss measures and calculates total magnetic loss
 - **I vs.** $\int V$ displays the plot of I and $\int V$ waveforms
- Output measurements
 - Line Ripple measures the amount of AC signal related to the input line frequency.
 - **Switching Ripple** measures the amount of AC signal related to the switching frequency.

- Efficiency measures the power circuit efficiency by dividing the measured output power by the measured input power
- **Turn On Time** measures the time delay between the input voltage to the device under test going 'high' to the output voltage reaching its steady state.
- **Turn Off Time** measures the time delay between the input voltage to the device under test going to zero state, to the output voltage reaching its zero state.
- Frequency response measurements(available only in 4/5/6-PWR)
 - **Control Loop Response (Bode)** plots the frequency and phase response of a closed loop circuit, and automatically calculates the gain and the phase margins.
 - **Power Supply Rejection Ratio (PSRR)** analyzes the ripple rejection capability of a DC-DC converter.
 - Impedance Analysis enables 2-port impedance measurement of Power Distribution Networks(PDN) using the oscilloscope.

Key features

- Add, configure, and remove automated measurements using the 4/5/6 Series MSO's pinch/swipe/zoom touch interface
- Easily document test results with automated report generation, including measurements, test results, and plots in a single, editable mht file or pdf file
- Utilizes optional and integrated Arbitrary/Function Generator for frequency response analysis (available only in 4/5/6-PWR). Also supports external AFG31000 Series function generator.
- Cover diverse applications with a wide range of voltage and current probes, including state-of-the-art IsoVu optically isolated voltage probes
- Configure any measurement and transfer any result via remote interface for automated testing applications
- Supports Save/Recall function of the session files for the FRA measurements
- Integrated Spectrum View analysis with Power FRA measurements

Input analysis

Power quality measurements, Current Harmonics, Input Capacitance, and Inrush Current are the four common sets of measurements made on the input section of a power supply, to analyze the effects of the power supply on the power line and evaluate the performance of the supply under various line conditions.

Power Quality

These measurements are optimized for line frequencies and are commonly performed at the AC line input of the power supply. They provide fast insight into the amount of power and the level of distortion at the input.

Measurements include:

RMS voltage and current

Figure 1: Power Quality measurements deliver information in multiple formats. Numerical results (upper right), tables (upper), and instantaneous power waveform and energy plots (lower)

Harmonics

Any power supply with a non-linear device on its input (e.g. a rectifier) presents a nonlinear load to the AC line. Unless mitigated, excessive harmonic energy can affect the operation of other equipment connected to the power line and increase the cost of delivering the electric power. This has resulted in standards limiting harmonics generated by line-powered devices.

Advanced Power Measurement and Analysis includes test limits for the IEC61000-3-2, AM 14, and MIL- STD-1399 standards to help you perform pre-compliance testing before investing in official compliance testing. It presents up to 100 harmonics in graphical and tabular formats, and lets you easily traverse though the list to get details on any individual harmonic.

Figure 2: Harmonics bar graph, harmonics results table, and traverse capability via the results bar (upper right)

Input capacitance and Inrush current measurement

4-PWR-BAS, 4-PWR, 5-PWR, and 6-PWR provides peak inrush current and capacitance measurements for testing switching power supplies during operation.

Inrush current, input surge current or switch-on surge is the maximum, instantaneous input current drawn by an electrical device when first

turned on. Power converters have inrush current that is more than their steady state current due to the charging current of input capacitance. Measuring inrush current and input capacitance is important to ensure the design works effectively.

Figure 3: Input capacitance and inrush current measurement with traverse capability

Switching component analysis

The accurate calculation and evaluation of energy loss in power supplies has become even more critical with the drive toward higher power conversion efficiency and greater reliability.

Switching loss measurements

Although almost all components of a power supply contribute to energy losses, a significant portion of energy losses in a switch-mode power supply (SMPS) occur when the switching transistor transitions from a Turn-off (T_{off}) to a Turn-on (T_{on}) state and vice versa (Turn-off loss). By measuring the voltage drop across the switching device and the current flowing through the switching device, Advance Power Analysis automatically calculates switching loss measurement parameters for each cycle.

Until recently, taking switching measurements on the high side of halfbridge switching stages were almost impossible. Any measurement relative to the switching node, including high-side V_{DS} and voltages across current shunts, suffered from distortion due to the significant common-mode voltage signal impinging on the differential signal. This problem is worse with wide bandgap devices, such as GaN and SiC transistors, as switching frequencies increase and the need to optimize new designs becomes imperative.

The 4/5/6 Series MSO is designed to work with IsoVu optically isolated probes, enabling designers to perform accurate switching measurements even in the presence of high common mode signals.

Figure 4: Switching Loss shows power dissipation in a FET. Waveforms are annotated with color-coded markers showing the measurement regions for T_{orr}, T_{off}, and Total cycle, corresponding to values in the results badge. Controls in the results badge let you easily traverse from cycle to cycle.

Switching loss measurements include special settings to produce stable, repeatable measurements on active power factor correction stages, and flyback converters. switch versus current through the switch during turn-on and turn-off, letting you judge the range of switching loss for all cycles at a glance.

To get an overview of the switching loss for all captured cycles, you can use the trajectory plot. It automatically plots the voltage across the

Figure 5: Switching Loss Trajectory Plots (upper window) show the Ton loss, and Toff loss for all switching cycles in a single plot.

Safe operating area

The Safe Operating Area (SOA) plot is a graphical technique for evaluating a switching device to ensure that it is not being stressed beyond its maximum specifications. SOA testing can be used to validate performance over a range of operating conditions, including load variations, temperature changes, and variations in input voltages. Mask testing can also be used with SOA plots to automate validation.

File	Edit	Applications	Utility	Help		— 🗆 X
Waveform	View					Add New
0						Cursors Note
C 2						Results
		-50 ms		40 ms -30 ms		Table Plot
Plot 1 - SC	A (Ch 1	I, Ch 2, Power 1)				Power 1 1 2 SOA Mask Hits: 56.39 k Status: Fail
			-			
Ī						
			and spectrum			
Ch 1 1.9 V/div 1 MΩ 200 MHz ^B	Ch 2 50 m 1 M9 120	nA/div Ω MHz ^B w			3 4 5 6 7 8 Addi Addi Addi Addi Addi Addi Implementation 100 ms/div 100 ms/di	e Stopped

Figure 6: Safe Operating Area (SOA) plot with mask helps verify the switching devices are staying within their SOA envelope under changing operating conditions.

RDS_(on)

This measurement characterizes the resistance of the switching device during the conduction cycle, when the device is ON and conducting current. The dynamic-on-resistance is the ratio of the voltage across the device when it is turned ON to the current flowing through the device.

The software ensures that the minimum RDS_{on} value in the acquisition is highlighted and zoomed in for easy viewing. In addition, the traverse capability helps to move from cycle to cycle to the respective RDS_{on} values.

Figure 7: RDS(on) measurement

Magnetic analysis (available only in 4/5/6-PWR)

Supports the following measurements:

- Inductance
- · Magnetic property including BH curve
- Magnetic loss
- Ivs. JV

Magnetic components are an important part of any power supply system. Inductors and transformers are used as energy storage devices in both switch-mode and linear power supplies. Some power supplies also use Inductors in filters at their output stage. Given their important role in the system, it is essential to characterize these magnetic components to determine the stability and overall efficiency of the power supply.

Inductance

Inductors exhibit increasing impedance as frequency increases, impeding higher frequencies more than lower frequencies. This behavior is known as inductance and is measured in units of Henries. The inductance can be measured automatically with Advanced Power Measurement and Analysis software.

Magnetic loss

An analysis of magnetic power losses is essential to accurately characterize the efficiency, reliability, and performance of a switching

power supply. Advanced Power Measurement and Analysis software measures the inductive total magnetic power loss, as shown in the following figure.

Magnetic Property

This measurement computes the properties of the magnetic components including magnetic flux density (B), magnetic field intensity strength (H) and various loss components including Hysteresis Loss and Total Loss. This measurement also supports multiple secondary source configuration based on the scope channel count.

B-H plots

The properties of magnetic materials are described by the magnetic flux density (B), magnetic field intensity strength (H), and the magnetic permeability of a material (μ). B-H plots are often used to verify the saturation (or lack thereof) of the magnetic elements in a switching supply and provide a measure of the energy lost per cycle in a unit volume of core material. Advanced Power Measurement and Analysis software measures the voltage across the magnetic element and the current flowing through it, and plots B versus H, as shown in the following figure. You can test multiple secondary windings of a transformer simultaneously, thereby ensuring faster validation/testing times leading to faster time to market.

l vs. ∫V plot

I vs. $\int V$ plot provides insight to the B and H values, proportional to the voltage and current. This is the integral of the voltage and current waveforms in X-Y plot format as shown in the following figure.

Figure 8: Magnetic Analysis measurement with B-H curve, I vs. JV, and Inductance plots

Output analysis

The ultimate goal of a DC-output power supply is to transform input power into one or more DC output voltages. The most important output measurements for switching power supplies are line ripple and switching ripple.

Line and switching ripple

The quality of a power supply's DC output should be clean, with minimal AC noise and ripple. Advanced Power Measurements and Analysis

software measures ripple to help you isolate the cause. Line ripple measurements indicate the amount of AC signal related to the input line frequency (since the input is rectified, line ripple is usually twice the frequency of the AC line). Switching ripple measures the amount of AC signal related to the switching frequency.

Figure 9: Ripple analysis helps distinguish low-frequency line ripple from higher frequency switching noise.

Efficiency

Device or product efficiency is a critical differentiator in today's competitive environment. Advanced Power Measurements and Analysis software lets you easily measure your product's power conversion efficiency (AC-DC, AC-AC, DC-DC, DC-AC).

It allows you to test efficiency on multiple outputs at once, for faster testing and validation. You can configure each output independently.

Figure 10: Efficiency measurement

Figure 11: Efficiency measurement configuration lets you test new generation multi-output power conversion devices (AC-DC, AC-AC, DC-DC, and DC-AC)

Turn on time and turn off time

Turn on time is defined as the time it takes for the output voltage to reach a steady state after the input voltage is turned on.

Turn off time is defined as the time it takes for the output to reach its zero state after the input voltage is switched off.

It is very important for SMPS to operate at specified turn on and turn off time. If the delay between mains power and SMPS startup is not as per design (typically 1 ms) it can disrupt the operation of some sensitive loads. Most embedded systems use more than one power supply and many use multiple outputs.

4-PWR-BAS, 4-PWR, 5-PWR, and 6-PWR automates this measurement for up to 5 outputs (4 Series MSO) or up to seven outputs (5 Series MSO AND 6 Series B MSOs) or up to 3 outputs (6 Series MSO) simultaneously.

Figure 12: Turn on time measurement

Figure 13: Turn off time measurement

Figure 14: The Turn on time measurement configuration supports multiple output devices

POWER 1				?
TURN OFF TIME				>
CONFIGURE				
Input Source	Type DC-DC	AC-DC	Label Turn Off	o v Time
Maximum Voltage 12 V	Input Trig	gger 10 V	Maxin	num Time 2 s
Number of Outputs	Ou Output 1 Cr	ntput Source n 2	Output	Voltage ⁶ 30 V
2				
5				
6 7				
GATING				>

Figure 15: The Turn off time measurement configuration supports multiple outputs

Frequency response analysis (available only in 4/5/6-PWR)

The Control Loop Response analysis (Bode plots), Power Supply Rejection Ratio (PSRR) and Impedance measurement provide key measurements to ensure stable, low-noise power supply designs. While it is possible to perform this analysis with a vector network analyzer or dedicated frequency response analyzer, these instruments can require significant setup time and long learning curves. Advanced Power Measurement and Analysis enables frequency response analysis right on the 4/5/6 Series MSOs, taking advantage of the optional, built-in or external arbitrary/function generator.

These measurements leverage the built-in Spectrum View tool on the 4/5/6 Series MSOs to get a finer frequency resolution across the various user-configurable frequency bands, and improve the accuracy of test results by analyzing the measurements in the frequency domain.

Control Loop Response (Bode plots)

Bode plots and gain/phase margin measurements enable designers to determine the stability of a power supply control loop. Unstable control loops lead to oscillations and inefficient performance. Filter designers also use amplitude and phase plots to test filter designs.

Automated Control Loop Response measurements use the built-in AFG to provide a single source to sweep through a specified frequency range, plotting amplitude and phase at each point. Signals are introduced into the control loop using an injection transformer, such as the J21xxA models from Picotest. The resulting gain and phase plots (Bode plots) are used to automatically calculate gain and phase margins. Cursors allow you to view gain and phase values at any frequency on the curves.

Control loop response measurement configuration allows user to set START and STOP frequencies, select constant/amplitude profile, Impedance, and points per decade for better plot rendering.

Figure 16: Control Loop Response (Bode plots) plots gain and phase versus frequency and calculates the gain margin and phase margin.

Power Supply Rejection Ratio (PSRR)

The PSRR measurements enable designers of DC-DC converters and regulators to quantify the ability of devices to attenuate AC over a specified frequency range. The test uses the optional, built-in function generator of the 4/5/6 Series MSO or an external Tektronix AFG31000

function generator, along with an injection transformer (such as the Picotest J2120A Line Injector), to modulate the input to the regulator. The system automatically measures the AC voltage at both the modulated input and output. It calculates the rejection ratio as 20Log (V_{in}/V_{out}) at each frequency within the swept band, and plots the result.

Figure 17: Power Supply Rejection Ratio (PSRR) plots the rejection ratio over frequencies and annotates the min and max values

POWER 2			?
POWER SUPPLY REJECTION	RATIO	Phase	
Input Source Ch 1 🔹	Output Source Ch 2	▼ PSRR	
Generator Internal External		Impeda 50 Ω	nce High Z
	Points Per S Decade F 10	Start S Frequency I 100 Hz	Stop Frequency 20 MHz
Amplitude Mode	Amplitude	Analysis M	ethod
Constant Profile	100 mV	FFT	View
Power Preset Supply Re Preset, pre begin built	eset uses the inp be and generator pr jection Ratio plot. ss the "Run/Stop" b ding the Power Supp	uts above to p operly to create . After performi outton on the fror oly Rejection Ratic	reset the P the Power ng Power my it panel to plot. 300 my
			200 mV
			100 mV
			-100 mV
			-200 mV

Figure 18: Control loop response and Power supply rejection ratio measurement allow you to set START and STOP frequencies of default internal AFG or external AFG31000 series. They also allow you to select constant/amplitude profile, impedance, and points per decade for better plot rendering

Impedance

The 2-port impedance measurement enables designers to verify the impedance of their Power Distribution Network (PDN) over a specified frequency range. The test uses the optional built-in function generator of 4/5/6 Series MSO or an external Tektronix AFG31000 Series function generator, along with an active splitter J2161A, and power supply J2170B, an injection transformer (such as the Picotest J2102B or J2113A line injector) to measure the impedance of the PDN network. The system automatically calculates the impedance at each frequency of the swept band, and plots the result. BNC or a direct SMA connection are recommended.

Figure 19: Impedance measurement with results table and results badge showing values for the peak impedance points.

Smart probes deliver accurate results

Reducing noise and eliminating probing errors are among the best ways to improve the accuracy of power system measurements. The 4/5/6 Series MSO and Advanced Power Measurement and Analysis software support a wide range of probes to help address different measurement needs, and include several features designed to help minimize probing problems.

The system uses voltage and current probes with the TekVPI interface which supports communication between probes and the scope. This allows the probe to communicate its scale setting automatically to the oscilloscope. On appropriate probes, it enables control of ranges from the front panel of the scope, and it allows probes to communicate error conditions such as a partially open jaw or a need for degaussing on current probes.

For timing-critical measurements such as switching loss, the analysis software can query voltage or current probes and use nominal delay values to remove timing skew and synchronize voltage and current waveforms for accurate and repeatable results.

The system is compatible with IsoVu Isolated Measurement Systems. These differential probing systems provide complete optical isolation, bandwidth up to 1 GHz, and extremely high common mode rejection, making them ideal for V_{GS} , V_{DS} or V_{SHUNT} measurements in power systems. For optimizing designs that use wide bandgap switching devices such as GaN or SiC transistors, IsoVu probes are unbeatable.

Automated report generation

Data collection, archiving, and documentation can be tedious, but they are critical in the design and development process. 4-PWR-BAS, 4-PWR, 5-PWR, and 6-PWR analysis software includes an automated report generator to facilitate communication and record-keeping. Press a few buttons and generate a report showing all active measurements. Add plots or append additional tests to customize your reports. Reports are available as editable .mht files, or as .pdf files. A sample report is shown below.

ower Mea	asuremen	ts Report								Tektror
									Tuesda	iy February 13 2018 21
tup Configura	tion									
ope Details		Scope Ser	ial Number		Tek Scope Version			Score Cal	bration Status	
058		PQ300025)		1.6.1			Pass	0.0000	
be Details - CH5										
be Type			Probe Serial Nu	umber			Probe Cal Status			
1P0200			0022402				Default			
be Details - CH6										
se Type			Probe Serial Nu	umber			Probe Cal Status			
ower Mea	asurement	Summary Res	ults							
	on the opposite of the opposite						1000 000 000			
easurement	S	iources	Gain Marg	in	Phase Cross-o	ver frequency	Phase Margi	n	Gain C	ross-over frequenc
Measurement Control Loop R	Response C	bources Ch 1, Ch 2	Gain Marg 17.65 dB	in	Phase Cross-o 8.791 MHz	ver frequency	Phase Margi 46.20 Degre	n es	Gain C 6.202	ross-over frequenc kHz
leasurement Control Loop R	Response C	Ch 1, Ch 2	Gain Marg 17.65 dB	in	Phase Cross-o 8.791 MHz	ver frequency	Phase Margi 46.20 Degre	n es	Gain C 6.202	ross-over frequenc KHz
easurement control Loop R wer Measuren wer3 - MagProperty	Response C	ources Ch 1, Ch 2 Results	Gain Marg 17.65 dB	in	Phase Cross-o 8.791 MHz	ver frequency	Phase Margi 46.20 Degre	n es	Gain C	ross-over frequenc
easurement ontrol Loop R wer Measuren wr3 - MagProperty isurement	Response C ment Summary Sources	Cources Ch 1, Ch 2 Results Peak Flux Density	Gain Margi 17.65 dB Retentive Flux Dansity	in Coercive Field Strength	Phase Cross-o 8.791 MHz 8.791 MHz Maximum Field Strength	Ripple Curren	Phase Margi 46.20 Degre	n es	Gain C 6.202	Permeability
easurement ontrol Loop R wer Measurer wrd - MagProperty surement prefic Property	Response C	Peak Flux Density 945 SnT	Gain Margi 17.65 dB Retentive Flux Density	Coercive Field Strength 2.412mATim	Phase Cross-o 8.791 MHz 8.791 MHz Motimum Field Strength 520 (mATim	Ripple Curren 538.9mA	Phase Margi 46.20 Degre beta B 799.2nT	n es	Gain C 6.202 Deta H 444.4mATim	Permeability 1.380H/m
wer Measurer wer Measurer werd - MagProperty asurement gnetic Property	Response C ment Summary Sources Cons. Che	Ources Ch 1, Ch 2 Results Peak Flux Density 945 SnT	Gain Margi 17.65 dB Retentive Flux Density	Coercive Field Strength 2.412mAT/m	Phase Cross-o 8.791 MHz Maximum Field Strength 520 QmAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre beta B 799.2nT	n es	Gain C 6.202 Detta H 444.4mAT/m	Permeability 1.386Him
easurement ontrol Loop R wer Measurer wrd - MapProperty asurement gnotic Property wrd - MapreticLore	Response C ment Summary Sources Ch5, Ch6	Ources Ch 1, Ch 2 Results Pask Rux Density 945 SnT	Gain Marg 17.65 dB Retentive Flux Density 	Coercive Field Strength -2.412mAT/m	Phase Cross-o 8.791 MHz Maximum Field Strength 520 (mAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre Deita B 799.2nT	n es	Gain C 6.202 Deta H 444.4mAT/m	Permeability 1.386H/m
easurement control Loop R wer Measuren wed - MagProperty surement grieße Property werd - MagneticLos surement grieße Loss	Response C ment Summary Sources Cons. Cris St	Ources Ch 1, Ch 2 Results Peak Flux Density 945 Set	Gain Marg 17.65 dB Retentive Flux Density 	Coencive Field Strength	Phase Cross-o 8.791 MHz Maximum Field Strength 520 OmATim	Ripple Curren 538.9mA	Phase Margi 46.20 Degre Deita B 799.2nT Magnetic Loss 35.19mW	n 05	Gain C 6.202 Deta H 444.4mATan	Permeability 1.386H/m
leasurement control Loop R wer Measurement grieße Property ref4 - MagProperty ref4 - MagProperty ref4 - MagProperty ref4 - MagProperty	Response C ment Summary Sources Ch5, Ch6	iources Dh 1, Ch 2 Results Peak Riux Density 945 Ser	Gain Marg 17.65 dB Retentive Flux Danaity Sources Ch5, Ch6	Coercive Field Strength -2.412mATrm	Phase Cross-o 8.791 MHz Maximum Field Strength 520 CmAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre : Detta B 799.2nT Magnetic Loss 35.19mW	n	Gain C 6.202 Detta H 444.4mAT/m	Permasbility 1.380Hm
easurement ontrol Loop R wer Measurer werd - MagPropech asurement gnotic Property werd - MagneticLos seurement gnotic Loss werd - IVSIntegrativ	Response C ment Summary C Sources Ca5, Ct6 St	Ources Ch 1, Ch 2 Results Pask Flux Density 945 SnT	Gain Marg 17.65 dB Retentive Flux Danaity - Sources Cod	Coencive Field Strength	Phase Cross-o 8.791 MHz 8.791 MHz Macimum Field Strength 520 0mAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre beta B 7992nT Magnetic Loss 35.19mW	n es	Gain C 6.202	Permaability 1.380Hm
easurement ontrol Loop R wer Measurement asurement greate Loss over Loss over Loss over Loss over Loss	Sesponse (Meent Summary Seurces Ch5, Ch6 Set 2	ources Dh 1, Ch 2 Results Pask Rex Density 945 Ser	Gain Marg 17.65 dB Retentive Flux Dansity 	Coercive Field Strength 2.412mATrm	Phase Crosso 8.791 MHz 8.791 MHz 8.791 MHz 5.20 mAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre beta B 799.2nT Magnetic Loss 33.19m// IVS Integral V 21.56/m	n es	Gain C 6.202	Permasbility 1.326Hm
leasurement control Loop R wer Measuren werd - Magercoech sourcement groetic Property werd - Nagerciclos sourcement groetic Loss werd - Nichogandy sourcement s Integrat V	Response (C ment Summary C Sources Ch5, Ch6	Jources In 1, Ch 2 Results Peak Pour Density 945 Set	Gain Marg 17.65 dB Retentive Flux Dansity - Bources Ch5, Ch6	Coercive Field Strength -2-412mATim	Phase Cross-o 8.791 MHz 8.791 MHz Maximum Field Strength 520 0mAT/m	Ripple Curren 538.9mA	Phase Margi 46.20 Degre beta 8 799.2nT Magnetic Loss 35.19mW IV's Integral V 27.540V%	n es	Gain C 6.202 l	Permasbility 1.320Htm
leasurement control Loop R wer Measurer ascrement gradic Property werd - Magnetic or sourcement gradic Dass gradic Loss werd - Night Reserver werd - Night Reserver ascrement in Integrative ascrement in Integrative ascrement in Integrative ascrement in Integrative ascrement in Integrative ascrement in Integrative ascrement in Integrative ascrement	Sesponse (Sesponse (Sources CA5, Cté St	iources bh 1, Ch 2 Results Paak Rux Density 945 SnT	Gain Marg 17.65 dB Retentive Flux Dansity - Bources Ch5, Ch6	Coercive Field Strength 2.412mATrm	Phase Crosso 8.791 MHz 8.791 MHz Machinum Field Strength 520 OmATim	Ripple Curren 538.9mA	Phase Margi 46.20 Degre 200 2nT Negnotic Loss 35.19mW 1V3 httpgraf V 27.540V's	n es	Gain C 6.202 Deta H 444 4mATm	Permaskilty 1.380Hm
easurement ontrol Loop R wer Measuret assrenent grote Popety wrd - Magricourt grote Loss wrd - Nagricourt grote Loss wrd - Nagricourt searcement . Integral V wrd - Fichaery searcement	Response C ment Summary Sources Cris Sources	Cources Ch 1, Ch 2 Ch 1, Ch 2 Results Peak Flux Density SetS SerT	Gain Marg 17.65 dB Retentive Flut Dansity Ch5, Co6 Ch5, Co6	Coerche Field Strengt -2.412mATim	Phase Cross-o 8.791 MHz Maximum Field Brength Scid CruATim	Ripple Curren 538 mmA	Phase Margi 46.20 Degre 200 2nT 200 2nT Nagnetic Loss 35 19mW 1 V5 Integral V 27 540/vs Power	n es Efficiency2	Gain C 6.202 Deta H 444 AmATim	Toss over frequenc (Hz Permability 1.300Hm
leasurement iontrol Loop R www.reasure. www.reasure. www.reasure. gaster. gaster. gaster. gaster. gaster. gaster. unit. gaster. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. gaster. unit. unit. gaster. unit. unit. gaster. unit. unit. gaster. unit. uni. uni. unit. unit. unit. unit. unit. unit. unit.	Sources (Construction)	Results Peak Rus Density Sets Surt Results	Gain Marg 17.65 dB Retentive Flux Danaity Sources Ch5, Ch6 er Outp 35 t	Coercive Field Strength 2.4 12mATrm suft Power SmW	Phase Cross-O 8,791 MHz Mectrum Field Brength 220 0mA1m EBistercy1 100.0%	Ripple Curren 538 SmA Output2 35 Tam	Phase Margi 46.20 Degre 2002 Degr	Efficiency2	Gain C G.202 l 6.202 l	Toss CVer frequenc chtz Permastility 1.358Htm Tosti Efficiency 200.0%
easurement ontrol Loop R wer Measure end - Maghtopet screent gride Dosp werd - Maghtopet screent gride Loss werd - Maghtopet screent gride Loss werd - Maghtopet screent magnet werd - Maghtopet screent magnet werd - Maghtopet screent scren	Seesponse C ment Summary Sources Ch5, Ch6 Seeses Second Se	iources Dr. 1, Ch 2 Results Pask Rux Censity 945 SnT Iource Pow 80 OP Ch5, Ch6, 35 Snow	Gain Marg 17.65 dB Retentive Flux Daneity 	Coercive Field Strength :2-412mAT/m	Phase Cross-O 8.791 MHz Maximum Field Strength 520 0mATim Efficiency1 100 0%	Ripple Curren 538 SmA Outjust2 35 Starr	Phase Margi 46.20 Degre : Deta B 799 2nT Magnetic Loss 35 firm// 1V5 Integral V 27.540/% Power V	m 05 Efficiency2 100.0%	Ceain C 6.202 l 6.202 l 6.202 l 444 4m/T/m 444 4m/T/m	Permeability 1.386Hm Total Efficiency 200.0%
leasurement international and an anti- wwor Measurement genetic Property werd - Magnetic of sources of the anti- genetic Loss werd - Magnetic of sources of the anti- sources of the anti- tion of the anti- sources of the anti- to- tes of the anti- sources of the	Sources Bources Bources Bources Bources Bources Bources	iources Dh 1, Ch 2 Results Past Flux Density (set Set) Set Set 86 GP CH0, CH0, GR0, 35 15mm/	Gain Marg 17.65 dB Retentive Flux Dansity 	Coerche Field Strength 2 4 12mATrm	Phase Cross-Ocean 8.791 MHz Monotrough Field Stochast Time Efficiency 1 100.0%	Ripple Curren 538 (mA 0 utputz 35 19m	Phase Margi 46.20 Degre 200 2017 Nagnetic Loss 35 Territy 1935 Integral V 27 54021 Power V	m 05 Efficiency2 100.0%	Cain C 6.202 Deta H 444 4mATm	Permaskillay 1.356Htm Total Efficiency 200.0%

Power3 - MagF	roperty													
Measurement	Test	Sources	Mean'	Min'	Max'	PK-PK	Std Dev'	Population'	Accum Mean	Accum Min	Accum Max	Accum Pk-Pk	Accum Std Dev	Accum Pop
Magnetic Property	Peak Flux Density	Ch5, Ch6	945.5nT	901.5nT	988.9nT	87.38nT	22.12nT	16	352.8nT	-491.4nT	1.310uT	1.801uT	456.2nT	25650
Magnetic Property	Retentive Flux Density	Ch5, Ch6	-	-	-	-	-	0	-	-				0
Magnetic Property	Coercive Field Strength	Ch5, Ch6	-2.412mAT/m	-2.412mAT/m	-2.412mAT/m	0.000AT/m	0.000AT/m	1	33.27mAT/m	-6.509mAT/m	359.6mAT/m	366.1mAT/m	89.51mAT/m	515
Magnetic Property	Maximum Field Strength	Ch5, Ch6	520.0mAT/m	520.0mAT/m	520.0mAT/m	0.000AT/m	0.000AT/m	1	515.0mAT/m	9.135mAT/m	524.3mAT/m	515.1mAT/m	41.90mAT/m	587
Magnetic Property	Ripple Current	Ch5, Ch6	538.9mA	538.2mA	540.3mA	2.102mA	604.8uA	16	203.8mA	1.261mA	543.8mA	542.5mA	258.2mA	25850
Magnetic Property	Delta B	Ch5, Ch6	799.2nT	799.2nT	799.2nT	0.000T	0.000T	1	694.7nT	1.429pT	872.7nT	872.7nT	179.2nT	587
Magnetic Property	Delta H	Ch5, Ch6	444.4mAT/m	444.4mAT/m	444.4mAT/m	0.000AT/m	0.000AT/m	1	401.8mAT/m	463.6uAT/m	451.0mAT/m	450.5mAT/m	105.5mAT/m	587
Magnetic Property	Permeability	Ch5, Ch6	1.386Him	1.386Him	1.386H/m	0.000H/m	0.000H/m	1	1.360H/m	10.30mH/m	1.902Him	1.892Him	162.5mH/m	587

NOMELO - FUICIE	owero - Emclency													
Measurement	Test	Sources	Mean'	Min'	Max'	PK-PK'	Std Dev'	Population'	Accum Mean	Accum Min	Accum Max	Accum Pk-Pk	Accum Std Dev	Accum Pop
Efficiency	Input Power	Ch5, Ch8	35.19mW	35.19mW	35.19mW	0.000W	0.000W	1	35.79mW	777.7uW	39.01mW	38.23mW	3.051mW	587
Efficiency	Output1 Power	Ch5, Ch8	35.19mW	35.19mW	35.19mW	0.000W	0.000W	1	35.79mW	777.7uW	39.01mW	38.23mW	3.051mW	587
Efficiency	Efficiency1	I/P: Ch5, Ch6 O/P: Ch5, Ch6	100.0%	100.0%	100.0%	0.000%	0.000%	1	100.0%	100.0%	100.0%	0.000%	0.000%	587
Efficiency	Output2 Power	Ch5, Ch6	35.19mW	35.19mW	35.19mW	0.000W	0.000W	1	35.79mW	777.7uW	39.01mW	38.23mW	3.051mW	587
Efficiency	Efficiency2	IP: Ch5, Ch5 O/P: Ch5, Ch6	100.0%	100.0%	100.0%	0.000%	0.000%	1	100.0%	100.0%	100.0%	0.000%	0.000%	587
Efficiency	Total Efficiency	IP: Ch5, Ch6 O/P: Ch5, Ch6, Ch5, Ch6	200.0%	200.0%	200.0%	0.000%	0.000%	1	200.0%	200.0%	200.0%	0.000%	0.000%	587

Views Time Domain View

Plots

Plot 1 - BH Curve (Ch 5, Ch 6, Power 3)

Power3 - MagPropert	γ								
Voltage Source Ref I	Levels	Current Source Ref L	evols.	Configurations		Gating		General	
Global Enabled	True	Global Enabled	True	ResultantCurr	math2	Gating Type	None	Custom Measurement Name	Magnetic Propert
Base Top Method	Automatic	Base Top Method	Automatic	SecWindgCount	Zero				
RiseHigh	90%	RiseHigh	90%	Measunits	SI				
RiseMid	50%	RiseMid	50%	Edgesource	Voltage				
diseLow	10%	RiseLow	10%	Primarytums	1				
alHigh	90%	FallHigh	90%	MagLongth	1m				
alMid	50%	FalMid	50%	CrossSection	1mÅ ²				
all.ow	10%	Fall.ow	10%						
Hysteresis	15%	Itesteresis	15%						

Specifications

Input analysis	True power, Apparent power, Power factor, Reactive power, Crest factor, Phase angle, THD, Harmonics, Input capacitance Inrush current, D0-160G, Pre-compliance testing for EN61000-3-2, EN61000-3-2 AM14, and MIL-STD-1399 (400 Hz) standards
Amplitude measurements	Cycle Amplitude, Cycle Top, Cycle Base, Cycle Minimum, Cycle Maximum, and Cycle Peak-to-Peak
Timing analysis	Pulse width, Duty cycle, Period, and Frequency variation versus time
Switching analysis	Switching loss, Turn-on (T_{on}), Turn -off (T_{off}), Conduction loss (cond), Safe operating area (SOA), SOA with Mask testing, di/dt, dv/dt, and RDS _(on)
Magnetic analysis	Magnetic analysis (available only in 4/5/6-PWR) ¹ Inductance, Magnetic Property, Magnetic Loss (Hysteresis Loss, Total Loss), and I vs.ĴV
Output analysis	Ripple (line frequency, switching frequency), Efficiency, Turn On Time, Turn Off Time
Frequency response analysis (available only in 4/5/6-PWR) ¹	Bode and PSSR Control Loop Response (Bode plot) and Power Supply Rejection Ratio (PSRR). PSRR plots rejection ratio vs frequency. Control Loop Response (Bode plot) calculates gain and phase margin.
	Requires and recommended TPP0502, two probes. Uses oscilloscope built-in generator or external Tektronix AFG 31000 Series.
	Dynamic range: Bode is typically 55 dB and PSRR is typically 85 dB.
	Frequency: 10 Hz to 50 MHz (with option AFG).
	1 Hz in case of Spectrum View method.
	10 Hz to maximum sine frequency (with AFG31000 Series)
	Amplitude: up to 5 V (needs Option AFG or external AFG31000 Series 10V p-p).
	Requires Picotest isolation and injector transformers.
	Impedance Measurement
	Impedance: Requires a BNC or Direct SMA cable with DC block.
	Frequency: 10 Hz to 50 MHz for internal AFG and 10 Hz to max of AFG31000 Series in case of external.
	Minimum Impedance can be measured is 10 milli Ohm and maximum is 47 Ohms
Plots	Time trend, Trajectory plot, Histogram, Bar graph, B-H curve, Inductance plot, I vs. ĴV, Phase, Gain, and Rejection ratio plots.
Report	MHT and PDF format, Data export to CSV format

¹ Not supported on option 4-PWR-BAS

Degauss/Deskew (static) Automatic detection of probes, Auto Zero. User can deskew probes from the menus for each channel

Source support

Live analog signals, reference waveforms, and math waveforms

Ordering information

Models

Product	Options	Supported instruments
New Instrument order option	4-PWR-BAS, 4-PWR, 4- PS2 5-PWR, 5-PS2, 5-PS2FRA 6-PWR, 6-PS2, 6-PS2FRA	4 Series MSO (MSO44,MSO46) 5 Series MSO (MSO54, MSO56, MSO58, MSO58LP) 6 Series MSO (MSO64) 6 Series B MSO (MSO64B, MSO66B, MSO68B)
Product upgrade option	SUP4-PWR-BAS, SUP4- PWR SUP5-PWR SUP6-PWR	
Floating license	SUP4-PWR-BAS-FL, SUP4-PWR-FL SUP5-PWR-FL SUP6-PWR-FL	 4 Series MSO (MSO44,MSO46) Floating licenses are transferrable from any 4 Series oscilloscope to any other 4 Series oscilloscope, for use of one instrument at a time. 5 Series MSO (MSO54, MSO56, MSO58, MSO58LP) Floating licenses are transferrable from any 5 Series oscilloscope to any other 5 Series oscilloscope, for use of one instrument at a time. 6 Series B MSO (MSO64B, MSO66B, MSO68B) Floating licenses are transferrable from any 6 Series oscilloscope to any other 6 Series oscilloscope, for use of one instrument at a time.

Additional information about power analysis is available at www.tek.com/application/power-supply-measurement-and-analysis.

Software Bundles

Bundle Options	Supported Instruments	Description
4-PRO-POWER-1Y	4 Series MSO	1 Year License Pro Power Bundle for 4 Series MSO
4-PRO-POWER-PER	4 Series MSO	Perpetual License Pro Power Bundle for 4 Series MSO
4-ULTIMATE-1Y	4 Series MSO	1 Year License Ultimate Bundle for 4 Series MSO
4-ULTIMATE-PER	4 Series MSO	Perpetual License Ultimate Bundle for 4 Series MSO
5-PRO-POWER-1Y	5 Series MSO	1 Year License Pro Power Bundle for 5 Series MSO
5-PRO-POWER-PER	5 Series MSO	Perpetual License Pro Power Bundle for 5 Series MSO
5-ULTIMATE-1Y	5 Series MSO	1 Year License Ultimate Bundle for 5 Series MSO
5-ULTIMATE-PER	5 Series MSO	Perpetual License Ultimate Bundle for 5 Series MSO
6-PRO-POWER-1Y	6 Series MSO	1 Year License Pro Power Bundle for 6 Series MSO
6-PRO-POWER-PER	6 Series MSO	Perpetual License Pro Power Bundle for 6 Series MSO
6-ULTIMATE-1Y	6 Series MSO	1 Year License Ultimate Bundle for 6 Series MSO
Table continued	•	

Bundle Options	Supported Instruments	Description
6-ULTIMATE-PER	6 Series MSO	Perpetual License Ultimate Bundle for 6 Series MSO

Recommended probes and accessories

Accessory type	Recommended
AC/DC current probes	TCP0020, TCP0030A, TCP0150
AC current probes	TRCP0300, TRCP0600, TRCP3000
Medium-voltage differential probes	TDP0500, TDP1000
High-voltage differential probes	THDP0200, THDP0100, TMDP0200
IsoVu isolated differential probes	TIVM1/L, TIVH08/L, TIVH05/L, TIVH02/L
High-voltage passive probes	P5100A, P6015A
Deskew pulse generator	TEK-DPG
Power solution bundles	4-PS2
	5-PS2, 5-PS2FRA
	6-PS2, 6-PS2FRA
Deskew fixture	067-1686-xx
Probes for frequency	TPP0502: Two probes (For Control Loop Response, and PSSR measurements)
response analysis (supported only in 4/5/6-	For Impedance measurement
PWR)	Two BNC or Direct SMA
Accessories for frequency	Picotest Line injector J2120A for PSRR (10 Hz to 10 MHz)
(supported only in 4/5/6-	Picotest Isolation transformers (for Bode) <i>picotest.com</i> :
PWR)	 J2100A (1 Hz to 5 MHz) J2101A (10 Hz to 45 MHz)
	Picotest transformers (for Impedance):
	Active Splitter: J2161A with a power supply J2170B
	Common mode transformer: J2012B/J2113A for Differential Amplifier
	One P2130A DC Block is needed with the BNC or SMA cable setup.
	Protest Active Splitter (J2161A)

Power solution bundles

4/5/6 Series MSO PS bundle options	Description
4-PS2	4-PWR-BAS, TCP0030A, THDP0200, 067-1686-xx deskew fixture
5-PS2	5-PWR, TCP0030A, THDP0200, 067-1686-xx deskew fixture
6-PS2	6-PWR, TCP0030A, THDP0200, 067-1686-xx deskew fixture
5-PS2FRA	5-PS2, two TPP0502 probes
6-PS2FRA	6-PS2, two TPP0502 probes

Complete power probing portfolio

Use the following list of probes with option 4-PWR-BAS, 4-PWR/5-PWR/6-PWR power to ensure complete solution to power measurement capabilities on the 4/5/6 Series MSO oscilloscopes.

Probe type	Description	
High voltage differential probes	The THDP0100/THDP0200/TMDP0200 high-voltage differential probes are the best choice for making non-ground referenced, floating measurements. These probes provide bandwidths to 200 MHz and voltage ranges up to 6000 V.	
	The P5200A/P5202A/P5205A/P5210A high-voltage differential probes are the best choice for making non-ground referenced, floating or isolated measurements. These probes provide bandwidths to 100 MHz and voltage ranges up to 5600 V.	
Optically Isolated differential probes	The TIVM1, TIVH08, TIVH05, and TIVH02 optically-isolated differential probes are the best choice for accurately resolving high bandwidth, differential signals, ideal for testing wide bandgap designs. The probes are available in 3 m and 10 m lengths.	
	The TIVM1 provides 1 GHz bandwidth and can measure differential signals up to ± 50 Vpk in the presence of common mode voltages up to 60 kV. The TIVH08, TIVH05, and TIVH02 provide 800 MHz, 500 MHz, and 200 MHz, respectively, and can measure differential signals up to ± 2500 Vpk in the presence of common mode voltages up to 60 kV.	

Table continued...

Probe type	Description	
Current probes	Tektronix offers a broad portfolio of current probes, including AC/DC current probes that provide bandwidths up to 120 MHz and best-in-class current clamp sensitivity down to 1 mA.	
	AC-only Rogowski probes include the TRCP300 (9 Hz to 30 MHz, 250 mA to 300 A peak), TRCP600 (12 Hz to 30 MHz, 500 mA to 600 A peak), and TRCP3000 (1 Hz to 16 MHz, 500 mA to 3000 A peak).	
Mid-voltage differential probes	The TDP0500/TDP1000 medium-voltage differential probes are the best choice for making non-ground referenced, floating or isolated measurements. These probes provide bandwidths to 1 GHz and voltage ranges up to \pm 42 V (DC + pk AC).	
Probes for control loop analysis and power supply rejection ratio	TPP0502 is the recommended passive probe FRA measurement. It has the attenuation of 2X and bandwidth of 500 MHz. It also offers low capacity loading.	
Probes for Impedance measurement	BNC or Direct SMA cable with DC Block are the recommended probes for Impedance measurement. The TPR1000 and TPR4000 probes provide a low-noise measurement solution (oscilloscope and probe), which is critical to not confuse the noise of the oscilloscope and probe with the noise and ripple of the measured DC supply. The higher input impedance in the probes minimizes the oscilloscope loading effect on the DC rails (50 k Ω at DC). These probes are used for Impedance testing as an alternative.	

For a complete listing of compatible probes for each oscilloscope, please refer to *http://www.tek.com/probes* for specific information on the recommended models of probes and any necessary probe adapters.

 Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835* Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688 Austria 00800 2255 4835* Brazil +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com. Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

> 12 Nov 2020 61W-61271-10 www.tek.com

