RIGOLUser's Guide

DS6000 Digital Oscilloscope Demo Board

July 2011

RIGOL Technologies, Inc.

Guaranty and Declaration

Copyright

© 2011 RIGOL Technologies, Inc. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of **RIGOL** Technologies, Inc.

Publication Number

DMA06105-1110

Notices

- **RIGOL** products are protected by patent law in and outside of P.R.C.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at company's sole decision.
- Information in this publication replaces all previously corresponding material.
- **RIGOL** shall not be liable for losses caused by either incidental or consequential in connection with the furnishing, use or performance of this manual as well as any information contained.
- Any part of this document is forbidden to be copied or photocopied or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees this product conforms to the national and industrial standards in China. International standard conformance certification is in progress, e.g. ISO.

Contact Us

If you have any problem or requirement when using our products, please contact **RIGOL** Technologies, Inc. or your local distributors, or visit: www.rigol.com

Contents

Guaranty a	and Declaration
Chapter 1	Overview 1-1
Chapter 2	Quick Start2-1
2.1 Den	no Board Layout2-1
2.2 Mea	asurement Connection2-7
2.3 Den	no Board Power-on2-7
Chapter 3	Demo Board Applications3-1
3.1 Con	nmon Signal Applications3-1
3.1	.1 Square Signal3-1
3.1	.2 Sine Signal3-2
3.1	.3 DA Output Signal3-4
3.1	.4 Differential Signal3-6
3.1	.5 PAL Video Signal3-8
	.6 NTSC Video Signal3-9
3.1	.7 Amplitude Modulation Signal3-10
3.2 Spe	cial Signal Applications3-12
3.2	.1 Noisy Sine Signal3-12
3.2	.2 Slow Sweep Signal3-15
3.2	.3 Fast Sweep Signal3-17
3.2	4 Phase Deviation Signal3-19
	5 Rare Abnormal Signal3-20
3.2	6 Frequent Abnormal Signal
3.2	7 Manual Abnormal Signal3-24
3.2	.8 Manual Burst Signal3-25
3.2	9 Narrow Burst Signal
	.10 Glitch Signal of Sine3-28
3.2	11 Glitch Signal of Square Waveform
3.2	.12 Crosstalk Signal3-32
3.3 Digi	tal Signal Applications3-35
3.3	3-35.1 RS232/UART Signal3-35
3.3	3-38.2 SPI Signal3-38
3.3	3.3 I2C Signal3-40
3.3	.4 CAN Signal3-42
3.3	3-43.5 Signals for Testing Logic Analyzer

Chapter 1 Overview RIGOL

Chapter 1 Overview

This manual introduces the functions and using methods of DS6000 Demo board. This Demo board is used to illustrate the basic functions of the oscilloscope. It is powered through USB port and can output 25 kinds of signals for the illustration of oscilloscope functions.

25 kinds of signals:

Common Signals

- Square waveform
- Sine waveform
- Digital-to-analog (DA) signal
- Unfiltered digital-to-analog (DA) signal
- Differential Signal
- PAL video signal
- NTSC video signal
- Amplitude modulation (AM) signal

Special Signals

- Sine signal superimposed with noise
- Slow sweep signal
- Fast sweep signal
- Phase deviation signal
- Rare abnormal signal
- Frequent abnormal signal
- Manual abnormal signal
- Manual burst
- Narrow pulse
- Sine signal superimposed with glitch
- Square signal superimposed with glitch
- Crosstalk signal

Digital signal

- RS232/UART signal
- I2C signal
- SPI signal
- CAN signal
- Signals for testing logic analyzer

Note: introductions in this edition are based on the V2.1 version demo board.

Chapter 2 Quick Start RIGOL

Chapter 2 Quick Start

This chapter briefly introduces the layout, the connection and the power-on of the Demo board.

2.1 Demo Board Layout

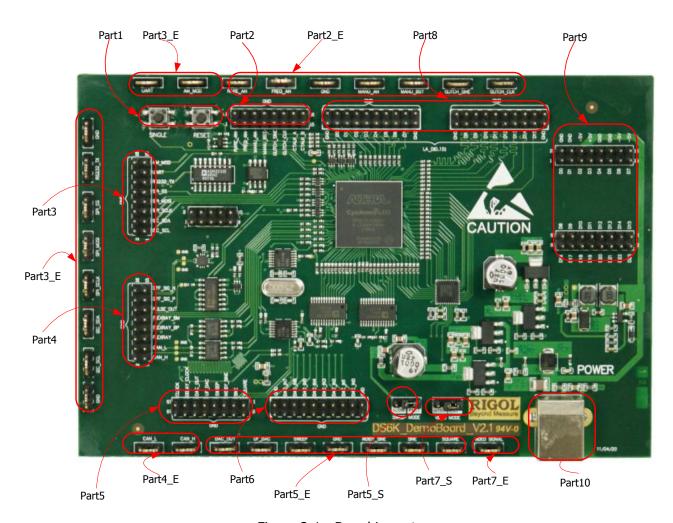


Figure 2-1 Board Layout

RIGOL Chapter 2 Quick Start

Table 2-1 Board Layout Explanation

Diagrams	Pins	Definitions	Detailed Explanations
	SINGLE	Manual trigger key	Used to trigger manual abnormal signal
			(MANU_AN), manual Burst signal (MANU_BST)
Part1			and crosstalk signal.
	RESET	Manual reset key	Press this key to reset the MCU on the Demo
		,	board. When protocol (such as CAN) signal error
			occurs due to MCU program runaway, press this
			key to bring the MCU system back to normal
			working state.
	RARE_AN	Rare abnormal	Output a 1MHz square waveform. Narrow pulse
	_	signal	occurs every 100ms and the pulse width is not
		3.5	greater than 5 ns.
	FREQ AN	Frequent abnormal	Output a 1MHz square waveform. Narrow pulse
		signal	occurs every 1ms and the pulse width is not
		l signal	greater than 5 ns.
	MANU AN	Manual abnormal	Controlled by the manual trigger key SINGLE.
Part2	7.7.110_7.11	signal	Apart from the 1.25MHz square waveform, a
		Signal	narrow pulse with 40ns pulse width is also
			output each time the SINGLE key is pressed.
	MANU_BST	Manual Burst	Output 25 bursts each time the SINGLE key is
	MANO_DS1	signal	pressed. Each burst contains 100cyc high level,
		Signal	3cyc low level, 1cyc high level, 3cyc low level
			and 100cyc high level. The time of each cyc is
			8ns.
	GLITCH_SINE	Sine glitch signal	Output 500kHz sine signal on which glitches with
	OLITCH_SINE	Sine gilteri signai	2ns width are superimposed. The glitch occurs
			about every 90 us and its position is not fixed.
	GLITCH_CLK	Square glitch signal	Output 1MHz square signal on which glitches
	OLITCH_CLK	Square gilteri signar	with 2ns width are superimposed. The glitch
			position is not fixed.
	CTALK_A	Crosstalk signal 1	Output 1MHz low-frequency square waveform.
	CTALK_B	Crosstalk signal 2	A 125MHz high-frequency crosstalk signal is also
	CIALK_D	Crosstaik signal 2	output each time the SINGLE key is pressed.
			output each time the SINGLE key is pressed.
Part2_E	RARE_AN	Part2 pins extension	
	FREQ_AN	. a. a. pino extension	
	MANU_AN	-	
	MANU_BST	-	
	GLITCH_SINE	-	
	GLITCH_CLK	-	
	GLITCH_CLK		

Chapter 2 Quick Start RIGOL

(22712.71202) 14	AM_MOD	Amplitude	Output amplitude modulation signal with 500kHz
	AIII_IIIOD	modulation signal	carrier frequency and 10kHz modulating
		modulation signal	frequency.
	UART	Asynchronous serial	The output signal shares the same
	UAIXI	transmission signal	characteristics (except polarity (positive
		a di istilission signal	polarity)) with the signal output from RS232_TX.
	RS232_TX	RS232 signal	Output a RS232 signal with 9600Bps baud rate,
Part3	1.0202_17	1.0232 Signal	1 start bit, 8 data bits, 1 stop bit, LSB output,
			negative polarity and none check bit. The
			content of the output data is the character string
			"RIGOL DS6000".
	SPI_SS	SPI SS signal	The signal rate is 1.25MHz and the output data
	SPI_MOSI	SPI MISO signal	steadily increases from 0 to 255.
	SPI_SCLK	SPI MOSI signal	
	I2C_SDA	I2C data signal	Output signal of I2C data bus. The content of
			the data is the character string "RIGOL" but the
			data frame head and read/write bits will change.
	I2C_SCL	I2C clock signal	Clock signal of I2C protocol. The clock frequency
			is 125kHz.
	ANA NAOD	D+2 -: : :	
	AM_MOD	Part3 pins extension	
	UART	-	
	RS232_TX	-	
Part3_E	SPI_SS	-	
Tarto_L	SPI_MOSI	-	
	SPI_SCLK I2C SDA	-	
		-	
	I2C_SCL		
	DIFF_SIG_N	Differential signal	Output random sequence. The frequency is
	DIFF_SIG_P		25MHz and the level logic is low-voltage
	DII I _310_I		differential signal (LVDS).
Part4	PULSE OUT	Narrow pulse output	Output pulse signal with 100us period and 2ns
	0202_001	Tarrett paise output	pulse width.
	FLEXRAY_BM	Test signal of	
	FLEXRAY_BP	FlexRay	Not supported.
	FLEXRAY	vehicle-carried	
		network	
		communication	
		protocol	
	CAN_L	Differential data bus	Output CAN signal with 1MHz signal rate. Its
	CAN_H	of CAN protocol	data frame ID is 0x6C7, the data frame length is
			5 Bytes and the data is the character string
			"RIGOL".

RIGOL Chapter 2 Quick Start

Part4_E CANL		Part4			
	CANH		pins extension		
	CLOCK		Phase deviation	50mV, 1MHz clock signal.	
	DELAY_CLOCK		signal	660mV, 1MHz clock signal. The delay time	
				cannot exceed 4ns.	
	DAC_OU	Т	Digital-to-analog	8 bits digital signal with 10kHz signal frequency	
Part5			output	and 25MHz sample frequency. Output the	
				converted and filtered sine waveform.	
	UF_DAC		Unfiltered	8 bits digital signal with 10kHz signal frequency	
			digital-to-analog	and 25MHz sample frequency. Output the	
		T = : = : : :	output	converted and unfiltered sine waveform.	
		SLOW	Slow sweep	Output a sweep signal of which the frequency is	
	SWEEP			from 1kHz to 100kHz. The sweep period is 40s	
		FACT		and the sweep mode is log.	
		FAST	Fast sweep	Output a sweep signal of which the frequency is	
				from 10kHz to 1MHz. The sweep period is 8s and	
	NOICY C	TNIE	Noigy sine signal	the sweep mode is log.	
	NOISY_S	DIINE	Noisy sine signal	Output sine signal with 500kHz frequency and	
				1Vpp amplitude. A sine waveform with 125MHz frequency and 300mVpp amplitude is	
				superimposed on this sine signal.	
	SINE		Sine	Output sine signal with 500kHz frequency and	
	SIVE		Sine	1Vpp amplitude.	
	SQUARE		Square	Output square waveform signal with 1MHz	
				frequency, 3.3Vpp amplitude, 50% duty cycle	
				and 10% overshoot.	
Part5_S	SLOW		Slow sweep	Select "Slow" or "Fast" sweep.	
	FAST		Fast sweep		
D 15 5	DAG 6: "	-	T		
Part5_E	DAC_OU	1	Part5	_	
	UF_DAC		pins extension		
	SWEEP	TNIE	-		
	NOISY_SINE		-		
SINE		-			
	SQUARE				

Chapter 2 Quick Start RIGOL

(Continued) Table 2-1 Board Layout Explanation					
	DAC_IN7				
	DAC_IN6				
	DAC_IN5		Provide 8 bits digital signal as DAC input.		
	DAC_IN4	Digital-to-analog			
Part6	DAC_IN3	input			
	DAC_IN2				
	DAC_IN1				
	DAC_IN0				
Part7_S	NTSC	NTSC video signal	Select the standard of the output signal of the VIDEO_SIGNAL pin. Select NTSC to output a		
	PAL	PAL video signal	NTSC video signal. Select PAL to output a		
	I AL	TAL VIGEO Signal	PAL/SECAM video signal. The signal amplitude is		
			1Vpp.		
Part7_E	VIDEO_SIGNA	Video signal output	_		
	L				
	14.50		0 + +42 51414		
	LA_D0		Output 12.5MHz square waveform.		
	LA_D1	-	Output 6.25MHz square waveform.		
	LA_D1 LA_D2		Output 6.25MHz square waveform. Output 3.125MHz square waveform.		
	LA_D1 LA_D2 LA_D3		Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform.		
	LA_D1 LA_D2 LA_D3 LA_D4		Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform.		
Double	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5		Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6	Circula for teating	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5	Signals for testing	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6	Logic analyzer,	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D6 LA_D7 LA_D8 LA_D9	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D6 LA_D7 LA_D8	Logic analyzer,	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform. Output 12.2kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D6 LA_D7 LA_D8 LA_D9	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D6 LA_D7 LA_D8 LA_D9 LA_D10	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform. Output 12.2kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D7 LA_D8 LA_D9 LA_D10 LA_D11	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform. Output 12.2kHz square waveform. Output 6.1kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D7 LA_D8 LA_D9 LA_D10 LA_D11 LA_D12	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform. Output 12.2kHz square waveform. Output 6.1kHz square waveform. Output 3.05kHz square waveform.		
Part8	LA_D1 LA_D2 LA_D3 LA_D4 LA_D5 LA_D6 LA_D7 LA_D8 LA_D9 LA_D10 LA_D11 LA_D11 LA_D12 LA_D13	Logic analyzer, 16-channel parallel	Output 6.25MHz square waveform. Output 3.125MHz square waveform. Output 1.562MHz square waveform. Output 781.2kHz square waveform. Output 390.6kHz square waveform. Output 195.3kHz square waveform. Output 97.66kHz square waveform. Output 48.83kHz square waveform. Output 24.4kHz square waveform. Output 12.2kHz square waveform. Output 6.1kHz square waveform. Output 3.05kHz square waveform. Output 1.525kHz square waveform.		

RIGOL Chapter 2 Quick Start

(Continued) 18	GND	Ground terminal	
	GND	Ground terminal	
	+5V	+5V DC voltage	
	+5V	+5V DC voltage	
	GND	Ground terminal	
	GND	Ground terminal	
	-5V	-5V DC voltage	
	-5V	-5V DC voltage	
	D0	3 V De Voltage	
	D1		
	D2		
	D3		
	D4		
Part9	D5		
	D6		
	D7		
	D8		
	D9	24 bits digital input	24 bits digital input terminal. It can input digital
	D10	terminal	data stream and be used for function extension.
	D11		
	D12		
	D13		
	D14		
	D15		
	D16		
	D17		
	D18		
	D19		
	D20		
	D21		
	D22		
	D23		
Part10		USB Device	USB port, used for demo board power supply.

Chapter 2 Quick Start RIGOL

2.2 Measurement Connection

Connect the signal output terminals of the Demo board to the corresponding input terminals of the oscilloscope before using the Demo board.

Connection Method:

- 1. Connect the BNC terminal of the probe to one of the BNC connectors of input channels (CH1-CH4) at the front panel of the oscilloscope.
- 2. Connect the probe tip to the corresponding signal output pin on the Demo board and connect the ground alligator clip of the probe to the ground terminal (GND) of the Demo board.

2.3 Demo Board Power-on

The Demo board can be powered through the USB port. Connect the **USB DEVICE** interface of the Demo board with the **USB HOST** interface of the oscilloscope or PC using USB data cable.

Note: The icon at the upper-right corner of the board indicates that static electricity would cause Demo board damage and the board should be used in anti-static environment as far as possible.

Chapter 3 Demo Board Applications

In this chapter, the Demo board is used to demonstrate the functions of the oscilloscope and the demonstration results of 25 kinds of signals are presented.

3.1 Common Signal Applications

3.1.1 Square Signal

1. Signal Explanation

- Signal Output Pin: SQUARE
- Square waveform with 1MHz frequency, 3.3Vpp amplitude and 50% duty cycle.

2. Functions

Basic signal, edge trigger, duty cycle measurement

- Connect the signal output pin SQUARE and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger mode to "Auto" and the vertical scale to "2 V"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably; enable "+Duty" and "Vpp" measurements and enable statistic function. The demonstration result is as shown in the figure below.

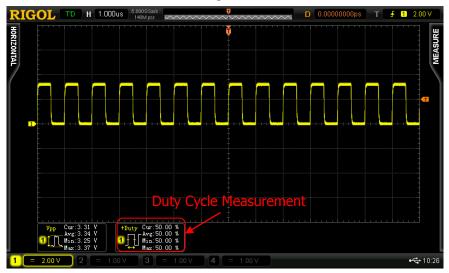


Figure 3-1 Demonstration Result of Square Waveform

3.1.2 Sine Signal

1. Signal Explanation

• **Signal Output Pin: SINE**

• Sine signal with 500 KHz frequency and 1 Vpp amplitude.

2. Functions

Basic signal, edge trigger, FFT

- Connect the signal output pin SINE and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger mode to "Auto" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

Figure 3-2 Demonstration Result of Sine Signal

• Enable "FFT" operation and the signal frequency is 500 kHz as shown in the figure below.

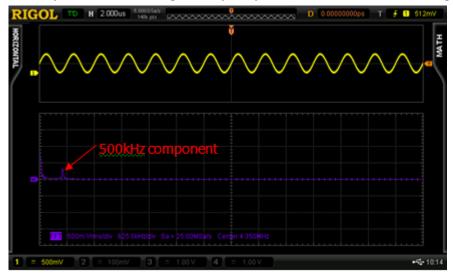


Figure 3-3 FFT Operation Result of Sine Signal

3.1.3 DA Output Signal

1. Signal Explanation

Signal Output Pin:

UF_DAC (output the converted and unfiltered sine waveform) DAC_OUT (output the converted and filtered sine waveform)

- The input of DA conversion are 8 bits, 10kHz digital signals (the signal pins are DAC IN7 to DAC IN0)
- The sample frequency is 25MHz.

2. Functions

MSO, Digital-Analog conversion

3. Demonstration and Result

• The digital input signals are as shown in the figures below:

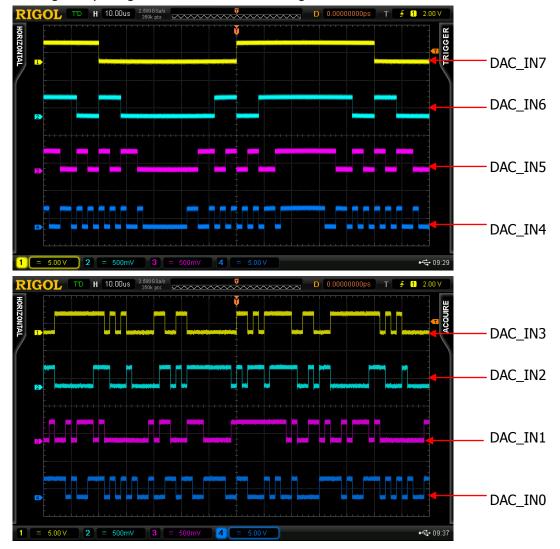


Figure 3-4 Digital Input Signals

Note: in the figure above, the probe ratio of CH1 and CH4 is "×10".

- Connect the signal output pin UF_DAC and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger mode to "Auto" and the vertical scale to "1V"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The analog signal is as shown in the figure below. This signal is the converted and unfiltered analog signal and the waveform has apparent "steps" as shown in the figure below.

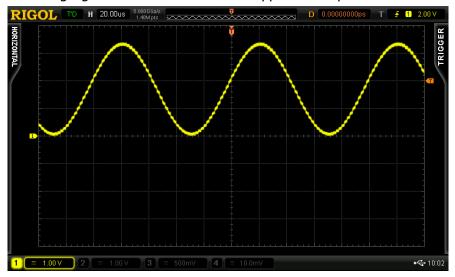


Figure 3-5 Unfiltered Analog Output Signal

- Connect the signal output pin DAC_OUT and GND to CH2 of the oscilloscope properly using the probe;
- Set the vertical scale to "1V" and adjust the vertical position and trigger level to make the
 oscilloscope trigger stably. The analog signal is as shown in the figure below. This signal is the
 converted and filtered analog signal and the waveform is relatively smoother as shown in the
 figure below.

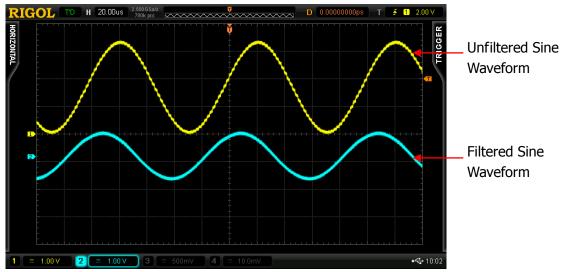


Figure 3-6 Analog Output Signal

3.1.4 Differential Signal

1. Signal Explanation

- Signal Output Pin: DIFF_SIG_N, DIFF_SIG_P
- Output 25 MHz random sequence and the level logic is low-voltage differential signal (LVDs).

2. Functions

Differential probe measurement, rising/falling edge trigger, MATH function

3. Demonstration and Result

 Connect DIFF_SIG_P and DIFF_SIG_N with CH2 using differential probe and the oscilloscope identifies the differential probe automatically. Set the "Probe Type" to "Diff-Probe". Set the trigger type to "Edge", the trigger mode to "Auto" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

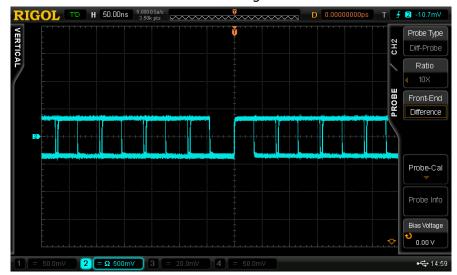


Figure 3-7 Differential Signal Measurement Using Differential Probe

- Connect DIFF_SIG_P and GND to CH1 of the oscilloscope using single-ended probe;
- Connect DIFF_SIG_N and GND to CH2 of the oscilloscope using single-ended probe;
- Set the trigger type to "Edge", the trigger mode to "Single" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

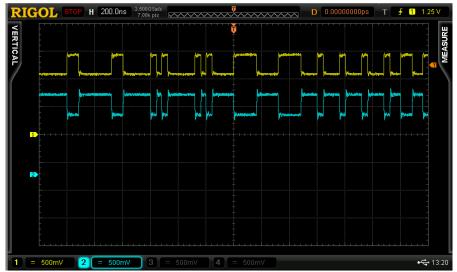


Figure 3-8 Differential signal Demonstration Using Single-ended Probe

• Enable MATH function (A-B). Set source A to CH1 and source B to CH2. The operation result is as shown in the figure below.



Figure 3-9 MATH Function Demonstration Using Single-ended Probe

3.1.5 PAL Video Signal

1. Signal Explanation

- Signal Output Pin: VIDEO_SIGNAL (select PAL)
- The signal amplitude is 1Vpp.

2. Functions

Video Trigger

- Select PAL from VIDEO MODE of the demo board. Connect the signal output pin VIDEO SIGNAL and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Video", the video standard to "PAL/SECAM", the video polarity to "Positive", the synchronization to "Line number", the line number to "1" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

Figure 3-10 PAL Video Signal

3.1.6 NTSC Video Signal

1. Signal Explanation

- **Signal Output Pin:** VIDEO_SIGNAL (select NTSC)
- The signal amplitude is 1Vpp.

2. Functions

Video trigger

- Select NTSC from VIDEO MODE of the demo board. Connect the signal output pin VIDEO SIGNAL and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Video", the video standard to "NTSC", the video polarity to "Positive", the synchronization to "Line number", the line number to "1" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

Figure 3-11 NTSC Video Signal

3.1.7 Amplitude Modulation Signal

1. Signal Explanation

• **Signal Output Pin:** AM_MOD

Carrier waveform: 500kHz, 1Vpp sine waveform;
 Modulating waveform: 10kHz, 1.6Vpp sine waveform.

2. Functions

Trigger holdoff, FFT

- Connect the signal output pin AM_MOD and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger mode to "Auto", the trigger holdoff to "70us" and the
 acquisition mode to "Normal"; adjust the vertical position and trigger level to appropriate values
 to make the oscilloscope trigger stably. The demonstration result is as shown in the figure
 below.

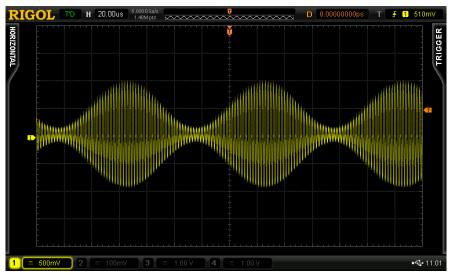


Figure 3-12 Amplitude Modulation Signal

• Enable FFT operation function. Set the vertical scale to 100mVrms/div and the center frequency to 500 KHz. The operation result is as shown in the figure below.

Figure 3-13 FFT Operation Result of Amplitude Modulation Signal

3.2 Special Signal Applications

3.2.1 Noisy Sine Signal

1. Signal Explanation

- Signal Output Pin: NOISY_SINE
- 500 kHz, 1Vpp sine waveform on which a 25MHz, 300mVpp high-frequency noise is superimposed.

2. Functions

High-frequency reject, bandwidth limit, FFT

- Connect the signal output pin NOISY_SINE and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger holdoff to "600us", the sample mode to "Normal" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below.

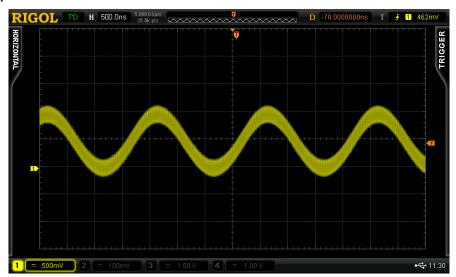


Figure 3-14 Sine Signal Superimposed with Noise

• Adjust the horizontal time base to "20 ns" and the waveform is as shown in the figure below.

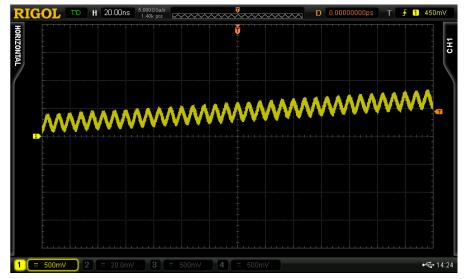


Figure 3-15 High-frequency Noise Details

• Enable FFT operation. Set the signal source to "CH1", the window function to "Rectangle", the vertical scale unit to "Vrms", the vertical scale to "100 mVrms" and the horizontal scale to "62.5MHz". The operation result is as shown in the figure below.

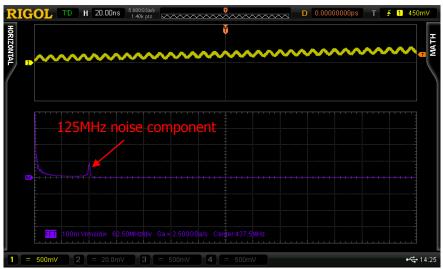


Figure 3-16 FFT Operation Result of Noisy Sine Signal

• Disable FFT operation, adjust the horizontal time base to "500 ns" and enable "HF Reject" and "Bandwidth Limit". The demonstration result is as shown in the figure below.

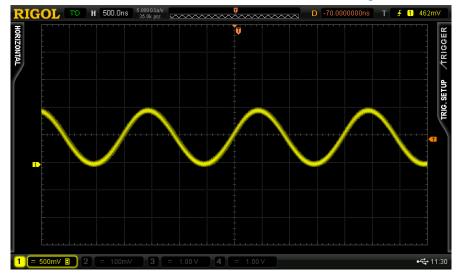


Figure 3-17 Signal after Noise Reject

• Adjust the horizontal time base to "20ns" again. Enable FFT operation and set the related parameters as above. The operation result is as shown in the figure below (the noise component is basically rejected).

Figure 3-18 FFT Operation Result after Noise Reject

3.2.2 Slow Sweep Signal

1. Signal Explanation

- **Signal Output Pin:** SWEEP (select SLOW)
- The frequency range of the sweep is from 1kHz to 100kHz, the sweep time is 40s and the sweep mode is log.

2. Functions

Measurement statistic, persistence display

- Set the "SWEEP MODE" to "SLOW" from the demo board; connect the signal output pin SWEEP to the oscilloscope properly using the probe.
- Press <u>Auto</u> at the front panel of the oscilloscope to set the oscilloscope parameters automatically. Enable frequency measurement and statistic function. Basically, the frequency range of the sweep can be determined through the maximum and minimum of the statistic function as shown in the figure below.

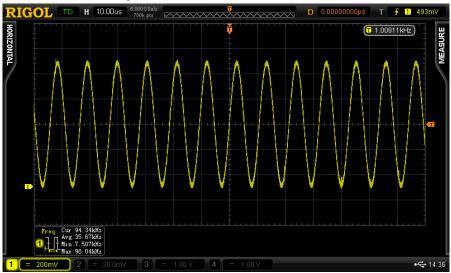


Figure 3-19 Slow Sweep Signal

 Adjust the "Persistence Time" to 20s and the sweep trace of the sweep signal is clearly displayed as shown in the figure below.

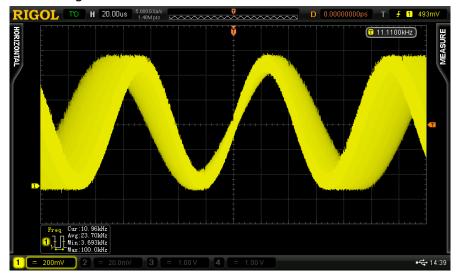


Figure 3-20 Sweep Trace of the Slow Sweep Signal

3.2.3 Fast Sweep Signal

1. Signal Explanation

- **Signal Output Pin:** SWEEP (FAST)
- The frequency range of the sweep is from 10kHz to 1MHz and the sweep time is 8s.

2. Functions

Measurement statistic, persistence display

- Set the "SWEEP MODE" to "FAST" from the demo board; connect the signal output pin SWEEP and GND to the oscilloscope properly.
- Press **Auto** at the front panel of the oscilloscope to set the oscilloscope parameters automatically. Enable frequency measurement and statistic function. Basically, the frequency range of the sweep can be determined through the maximum and minimum in the statistic function as shown in the figure below.

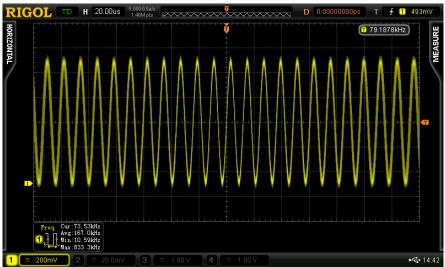


Figure 3-21 Fast Sweep Signal

 Adjust the "Persistence Time" to 500ms and the sweep trace of the sweep signal is clearly displayed.

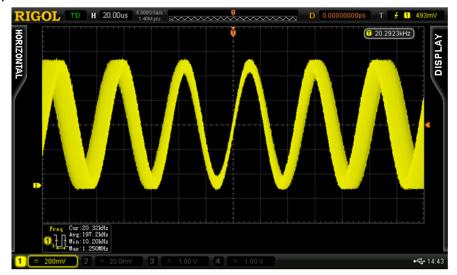


Figure 3-22 Sweep Trace of the Fast Sweep Signal

3.2.4 Phase Deviation Signal

1. Signal Explanation

- Signal Output Pin: CLOCK, DELAY_CLOCK
- The clock frequency is 1 MHz and the delay time cannot exceed 4ns.

2. Functions

Channel delay measurement

- Connect CLOCK and GND to CH1 of the oscilloscope using the probe; enable CH1, set the
 vertical scale to "100 mV", the vertical position to "0", the trigger type to "Edge", the trigger
 source to "CH1", the edge type to "Leading" and the trigger mode to "Auto"; adjust the trigger
 level to an appropriate value to make the oscilloscope trigger stably.
- Connect DELAY_CLOCK and GND to CH2 the probe; enable CH2, set the vertical scale to "100 mV" and vertical position to "0".
- Enable delay measurement of the rising edge as well as statistic function. The demonstration result is as shown in the figure below.

Figure 3-23 Channel Delay Measurement

3.2.5 Rare Abnormal Signal

1. Signal Explanation

- Signal Output Pin: RARE_AN
- Square waveform with 1MHz frequency. Narrow pulse occurs every 100ms and the pulse width cannot exceed 5ns.

2. Functions

Waveform capture rate, waveform record and analysis

- Connect the signal output pin RARE_AN and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the trigger mode to "Single", the horizontal time base to 5ns, the waveform capture rate to 180kHz, the memory depth to "Auto". Set the persistence time to 20s and the capture result of abnormal signal is as shown in the figure below.

Figure 3-24 Rare Abnormal Signal

• Enable the waveform record function. After the record finishes, use the waveform playback and analysis function to analyze the accidental pulse.

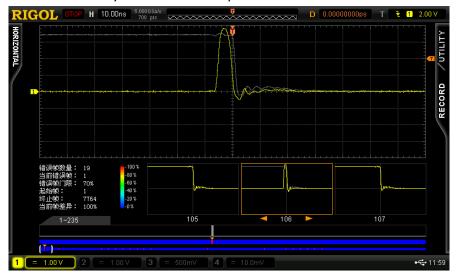


Figure 3-25 Waveform Record and Analysis

3.2.6 Frequent Abnormal Signal

1. Signal Explanation

- Signal Output Pin: FREQ_AN
- Square waveform with 1MHz frequency. Narrow pulse occurs every 1ms and the pulse width cannot exceed 5ns.

2. Functions

Pass/Fail, pulse trigger

- Connect the signal output pin FREQ_AN and GND to CH1 of the oscilloscope properly using the probe.
- Set the trigger type to "Pulse", the trigger condition to <6ns the trigger mode to "Auto" and the trigger level to 500mV. At this point, the abnormal signals can be observed stably as shown in the figure below.

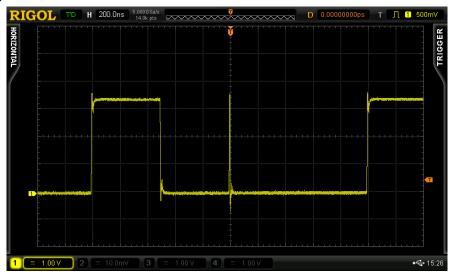


Figure 3-26 Stable Display of Frequent Abnormal Signal

• Enable Pass/Fail mode. Set X mask to 0.24div and Y mask to 0.50div. The demonstration result is as shown in the figure below.

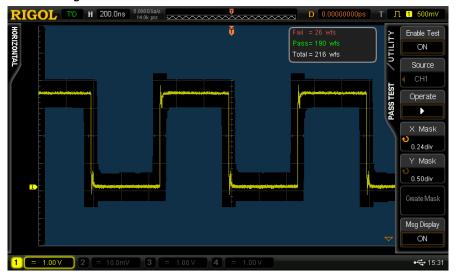


Figure 3-27 Pass/Fail Test of Frequent Abnormal Signal

3.2.7 Manual Abnormal Signal

1. Signal Explanation

• Signal Output Pin: MANU_AN

 Square waveform with 1.25MHz frequency. Narrow pulse with 40ns pulse width is output every time the key is pressed.

2. Functions

Pulse trigger

- Connect the signal output pin MANU_AN to CH1 of the oscilloscope properly using the probe.
- Set the trigger type to "Pulse", the trigger condition to <40ns, the trigger mode to "Normal" and the vertical scale to "1 V"; adjust the vertical position and trigger level to appropriate values. The demonstration result is as shown in the figure below.

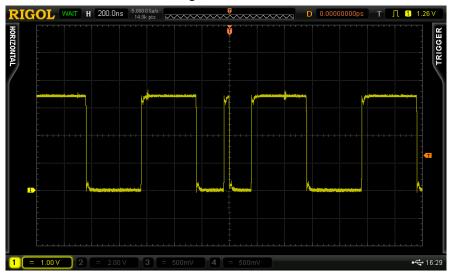


Figure 3-28 Manual Abnormal Signal

3.2.8 Manual Burst Signal

1. Signal Explanation

• **Signal Output Pin:** MANU_BST

• 25 bursts. Each burst contains high level and low level.

2. Functions

Pulse trigger, high sample rate, deep memory

- Connect the signal output pin MANU_BST and GND to CH1 of the oscilloscope properly using the probe.
- Set the time base to 5ms. At this point, the sample rate is 2GSa/s and the memory depth is 140Mpts. Under single trigger, every burst can be captured as shown in the figure below.

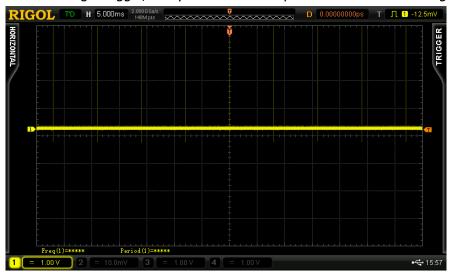


Figure 3-29 Manual Burst Signal

Adjust the time base to 200ns/div when the oscilloscope is in STOP state and amplify the
waveform captured. As shown in the figure below, all the waveform details are successfully
captured. As DS6000 provides a 140Mpts deep memory, users can adjust the horizontal position
to view relatively longer waveform stored.

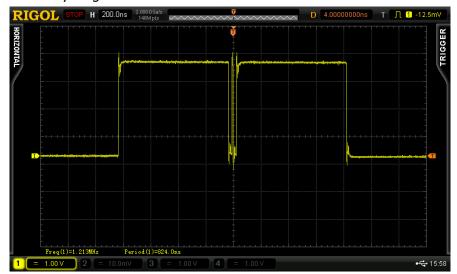


Figure 3-30 Burst Details

3.2.9 Narrow Burst Signal

1. Signal Explanation

• **Signal Output Pin:** PULSE_OUT

Narrow pulse signal with 100us period and 2ns width.

2. Functions

Pulse trigger

- Connect the signal output pin PULSE_OUT and GND to CH1 of the oscilloscope properly using the probe.
- Set the trigger type to "Pulse", the trigger condition to <4ns, the trigger mode to "Auto" and the vertical scale to "1 V"; adjust the vertical position and trigger level to appropriate values. The demonstration result is as shown in the figure below.

Figure 3-31 Narrow Pulse

3.2.10 Glitch Signal of Sine

1. Signal Explanation

- Signal Output Pin: GLITCH_SINE
- The sine frequency is 500kHz, the glitch width is 2ns, the glitch occurrence period is about 90us and the position of the glitch is not fixed.

2. Functions

Pulse trigger, multi-level gray scale

- Connect the signal output pin GLITCH_SINE and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Pulse", the trigger condition to <10ns and the trigger mode to "Auto"; adjust the time base to 100us and set the acquisition mode to "Normal" and the vertical scale to "500 mV"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below and users can view the interval time between glitches. All the adjacent glitches can be captured.

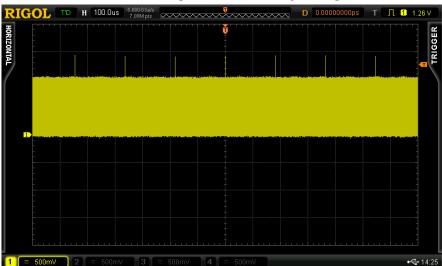


Figure 3-32 Sine Glitch Signal

• Set the time base to 2us. The demonstration result is as shown in the figure below and the positions of the glitches on the sine waveform are clearly displayed.

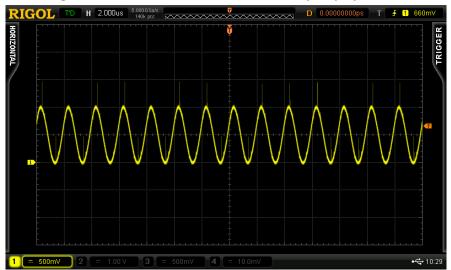


Figure 3-33 Sine Glitch Signal (Details)

3.2.11 Glitch Signal of Square Waveform

1. Signal Explanation

- Signal Output Pin: GLITCH_CLK
- The frequency of the square waveform is 1MHz, the glitch width is 2ns and the position of the glitch is not fixed.

2. Functions

Edge trigger, pulse trigger

- Connect the signal output pin GLITCH_CLK and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "Edge", the signal source to "CH1", the edge type to "Leading", the trigger
 mode to "Normal" and the vertical scale to "500 mV"; adjust the vertical position and trigger
 level to appropriate values. The demonstration result is as shown in the figure below.

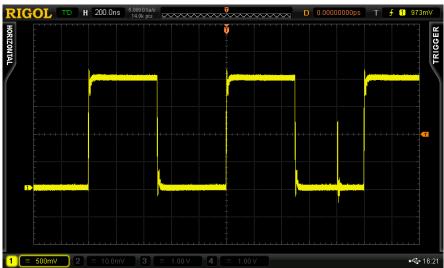


Figure 3-34 Square Waveform Glitch Signal

• Set the trigger type to "Pulse", the pulse condition to <10ns, the trigger mode to "Normal" and the time base to 2us; the demonstration result is as shown in the figure below and users can view the interval time between glitches.

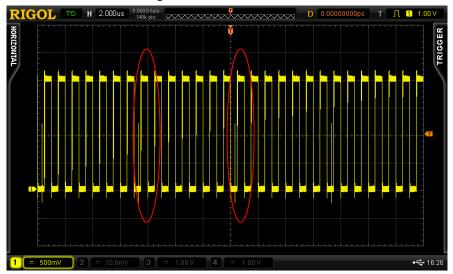


Figure 3-35 Time Interval between Glitches

3.2.12 Crosstalk Signal

1. Signal Explanation

- Signal Output Pin: CTALK_A, CTALK_B
- The two pins output 1 MHz low-frequency square waveforms. Press SINGLE to trigger the 125 MHz high-frequency signal.

2. Functions

Bandwidth limit, crosstalk demonstration

- Connect CTALK_B and GND to CH1 of the oscilloscope using the probe;
- Connect CTALK_A and GND to CH2 of the oscilloscope using the probe;
- Set the vertical scale of CH1 and CH2 to "2 V", the trigger type to "Edge", the signal source to "CH1", the edge type to "Leading" and the trigger mode to "Auto"; adjust the trigger level to an appropriate value to make the oscilloscope trigger stably. The demonstration result is as shown in the figure below. As the frequency measurement result in the figure shows, the frequency of the signal is 1 MHz.

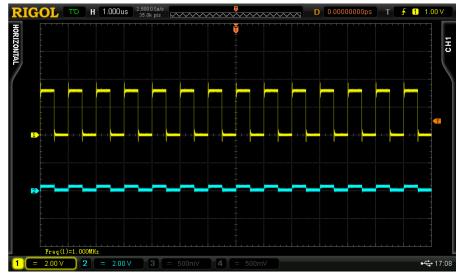


Figure 3-36 CTALK_A and CTALK_B Output Signals

• Press SINGLE to trigger the 125 MHz high-frequency signal. The demonstration result is as shown in the figure below.

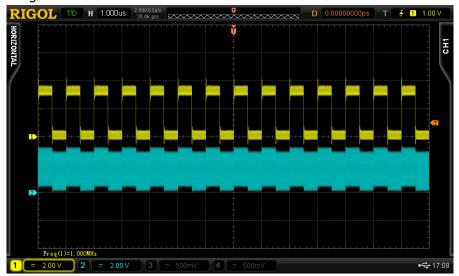


Figure 3-37 Crosstalk Signal Demonstration Result

• Enable the 20MHz bandwidth limit of CH1 and press SINGLE to trigger the 125 MHz high-frequency signal. The demonstration result is as shown in the figure below.

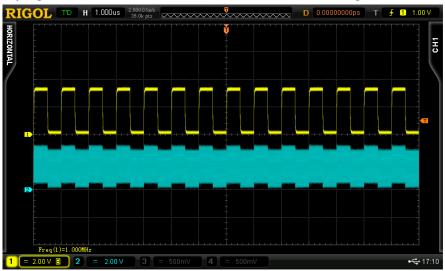


Figure 3-38 Enable 20MHz Bandwidth of CH1

• Enable the 20MHz bandwidth limit of CH2 and press SINGLE to trigger the 125 MHz high-frequency signal. The demonstration result is as shown in the figure below.

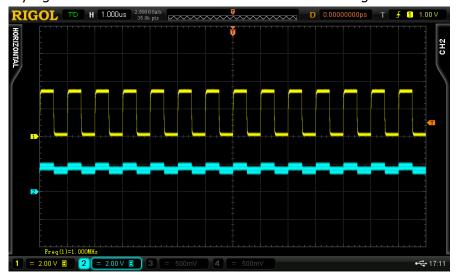
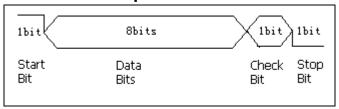



Figure 3-39 Enable 20MHz Bandwidth Limit of CH2

3.3 Digital Signal Applications

3.3.1 RS232/UART Signal

1. RS232 Protocol Explanation

- The start bit is always high level; the data bits is always 6bits, 7bits or 8bits. It is fixed at 8bits in this Demo board;
- By default, the data polarity is negative (namely high level stands for logic 0 and low level stands for logic 1);
- Check bit usually contains odd check, even check and none. For this Demo board, RS232 signal does not have check bit;
- Stop bit is always 1bit, 1.5bits or 2bits. For this Demo board, the stop bit of RS232 signal is 1bit.

2. Signal Explanation

- Signal Output Pin: RS232 TX
- Rate: 9600bps; Data: RIGOL DS6000; Frame structure: 1bit start bit+ 8bits data bits+ 1bit stop bit; LSB output; negative polarity, none (check bit)

3. Functions

RS232 trigger, RS232 decoding

- Connect the signal output pin RS232_TX and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "RS232", the signal source to "CH1", the trigger condition to "Start", the baud rate to "9600bps" and the trigger mode to "Auto"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably;
- When the oscilloscope is in T'D mode, set the decoding type to "RS232", TX to "CH1", RX to "OFF", the polarity to "-"(negative), the data bits to "8", the stop bit to "1 bit", the even-odd check bit to "None", the ary to "ASCII" and TX threshold to 1.36V. Set the BUS status to "ON" and the demonstration result is as shown in the figure on the next page.

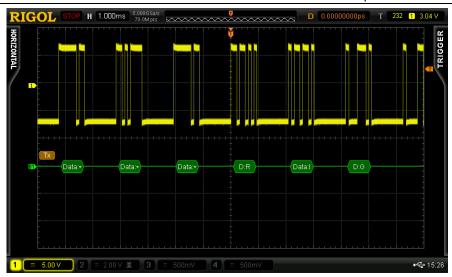


Figure 3-40 RS232 Trigger and Decoding

• Set the trigger condition to "Data" and the data to "54" (the ASCII code value of "6"). The corresponding data can be captured stably.

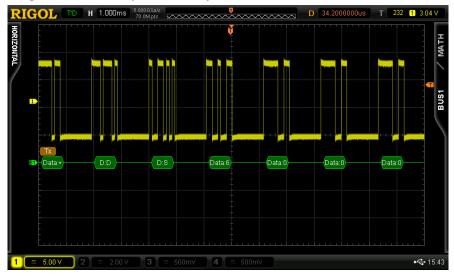


Figure 3-41 RS232 Trigger and Decoding (Data Trigger)

• Set the check mode to "Odd" in the decoding menu during the above-mentioned data trigger. As data on the Demo board does not contain check bit, red error identifier is displayed.

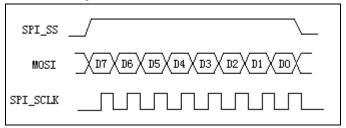


Figure 3-42 RS232 Trigger and Decoding (Odd Check)

Note: the output signal of pin UART is the same with the RS232_TX signal except that its polarity is positive. The same demonstration result can be obtained using the above method (set the polarity to "+" in protocol decoding).

3.3.2 SPI Signal

1. Protocol Explanation

- Clock signal and data appears synchronously. Sample the data on the rising edge of the clock signal.
- The continuous clock or data is one frame.
- SS: select positive or negative polarity. When positive polarity is selected, the oscilloscope starts
 decoding when the SS pin is logic low.. When negative polarity is selected, the oscilloscope
 starts decoding when the SS pin is logic high.
- For the data bus, every 8bit is a byte and every frame can contain 1 byte, 2 bytes or 3 bytes. In the figure above, the frame contains 1 byte.

2. Signal Explanation

- Signal Output Pin: SPI_SS, SPI_MOSI, SPI_SCLK
- The output Data increases steadily from 0 to 255 and the bits of every frame of data can be 8/16/24/32

3. Functions

SPI trigger, SPI decoding

- Connect SPI_SCLK and GND to CH1 using the probe; connect SPI_MOSI and GND to CH2 using the probe;
- Set the trigger type to "SPI", SCL to "CH1", SDA to "CH2", the trigger condition to "Timeout", the bits to 8, the data to "LLLH LLLH" and the clock edge to "Leading".
- When the oscilloscope is in T'D mode, set the decoding type to "SPI", SS and MISO to "OFF", SCLK to "CH1", MOSI to "CH2", the data bits to 8, the endian to MSB and the ary to hex. Set the BUS status to "ON" and the demonstration result is as shown in the figure on the next page.

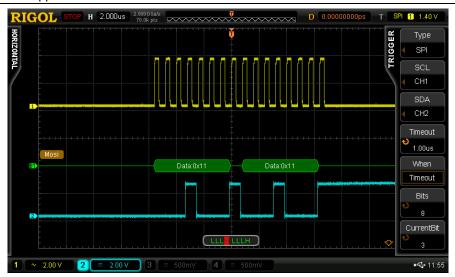
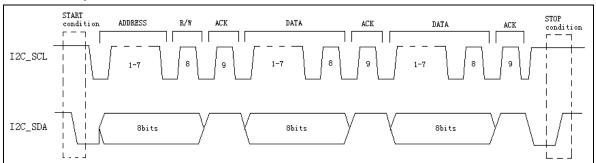



Figure 3-43 SPI Trigger and Decoding

3.3.3 I2C Signal

1. Protocol Explanation

- The start condition: when SCL is high level and SDA switches from high level to low level.
- The stop condition: when SCL is high level and SDA switches from low level to high level.
- The 8bits following the start condition is the slave device address and the read/write bit. The
 address bit can also be 10bits and at this point, it occupies two bytes.
- When the read/write bit is 0, the oscilloscope sends data (write); and when it is 1, the oscilloscope reads data (read).
- Every time a byte is sent by the host device, the slave device is asked to send a answer signal
 and at this point, the host device restores to the high level; if the signal is successfully received
 by the slave device, the level of the answer bit drops and if the signal is not successfully received,
 the answer bit holds in high level.

2. Signal Explanation

- Signal Output Pin: I2C_SCL, I2C_SDA
- I2C signal with 125 kHz rate. The content is "RIGOL". The data frame head and the read/write bit would change.

3. Functions

I2C trigger, I2C decoding

- Connect I2C_SCL and GND to CH1 properly using the probe; connect I2C_SDA and GND to CH2 properly using the probe.
- Set the trigger type to "I2C", SCL to "CH1", SDA to "CH2", the trigger condition to "Data", the data to "LHLH LLHL" (namely the decimal number 82 and the ASCII code of the character "R") and the trigger mode to "Auto"; adjust the vertical position and trigger level to appropriate values to make the oscilloscope trigger stably.
- When the oscilloscope is in T'D state, set the decoding type to "I2C", the ary to "ASCII", the SCLK threshold to "1.00V" and the SDA threshold to "1.00V". Set the BUS status to "ON" and the demonstration result is as shown in the figure on the next page.

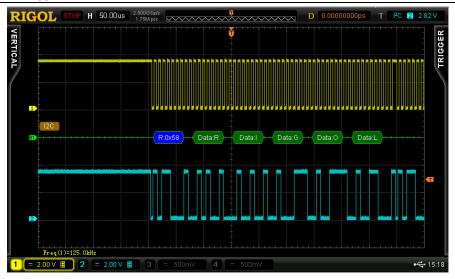


Figure 3-44 I2C Trigger and Decoding

3.3.4 CAN Signal

1. Protocol Explanation

1) The frame types include data frame, remote frame, error frame, overload frame and frame interval.

2) Standard format of data frame:

SOF Identifier DLC	Data	CRC	ACK	EOF
--------------------	------	-----	-----	-----

SOF: represents frame start;

Identifier: represents the ID of the data frame and is used to determine the priority of the frame:

DLC: represents the length of the data;

Data: data segment. It can contain 0 to 8 bytes of data and is output from MSB (the highest bit);

CRC: CRC check segment;

ACK: used to determine whether the data is successfully received or not.

2. Signal Explanation

- Signal Output Pin: CAN_L, CAN_H
- CAN signal with 1MHz signal rate. The data is the character string "RIGOL"; the data length is 5; the signal uses CRC check and does not have ACK segment.

3. Functions

CAN trigger, CAN decoding

- Connect the signal output pin CAN_H and GND to CH1 of the oscilloscope properly using the probe;
- Set the trigger type to "CAN", the signal source to "CH1", the signal type to "CAN_H", the trigger condition to "SOF", the baud rate to "1Mb/s" and the trigger mode to "Auto".
- When the oscilloscope is in T'D state, set the decoding type to "CAN" and the ary to ASCII. Set the BUS status to "ON" and the demonstration result is as shown in the figure below.

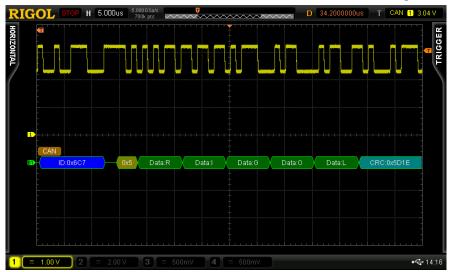


Figure 3-45 CAN Trigger and Decoding

3.3.5 Signals for Testing Logic Analyzer

1. Signal Explanation

- Signal Output Pin: LA_D0~LA_D15
- 16-channel parallel data (from D0 to D15). Wherein, the frequency of D0 is a half of 25MHz, the frequency of D1 is a half of the frequency of D0 and so on.

2. Functions

Logic analyzer

3. Demonstration and Result

 Connect LA_D0 and GND to CH1 of the oscilloscope using the probe; connect LA_D1 and GND to CH2 of the oscilloscope using the probe. The demonstration result is as shown in the figure below.

Figure 3-46 LA_D0 and LA_D1 Output Signals

 Set the trigger mode to "Pattern" (pattern trigger uses the logic relation between the two channels as trigger condition) and the trigger positions of CH1 and CH2 to "Leading" and "X", respectively. The oscilloscope can trigger stably as shown in the figure below.



Figure 3-47 LA_D0 and LA_D1 Output Signals (Pattern Trigger)