Agilent Technologies Noise Figure Selection Guide

Minimize the Noise

50 Years of Noise Figure Leadership from Agilent Technologies
Noise figure is one of the key parameters used to characterize the ability of receivers and their lower-level components to process weak signals in the presence of thermal noise. For example, when measuring low-noise amplifiers (LNAs), noise figure describes the signal-to-noise degradation that occurs due to the internally generated noise of the LNAs’ active devices. Agilent has provided noise figure test solutions for 50 years—from noise meters to modern spectrum-, network-, and noise figure analyzer-based solutions. These instruments provide easy measurements that can be performed quickly, with high levels of measurement accuracy.

Accurate measurements of noise figure are crucial in both R&D and manufacturing situations. In R&D, better accuracy allows for better agreement between simulations and measurements, and may help uncover noise contributors that were not considered in the simulation. In manufacturing, higher accuracy means smaller guard bands for setting and verifying component specifications. Better specifications yield more competitive products that can command higher prices or attain greater market share.
Measurement techniques

In order to select the right instrument for your noise figure needs, it is important to have a basic understanding of how noise figure measurements are made as well as their associated measurement uncertainties. Noise figure measurement uncertainty depends not only on the test equipment, but is also a function of the characteristics of the device under test (DUT)—for example, S-parameters and noise parameters.

There are two main methods in use today to measure noise figure. The most prevalent method is called the Y-factor or hot/cold-source technique. The Y-factor method uses a noise source placed at the input of the DUT, providing two levels of input noise. This method yields noise figure and scalar gain of the DUT, and is used with both spectrum and noise figure analyzer solutions. The Y-factor technique is easy to use, and it provides good measurement accuracy, especially when the noise source has a good source match and can be connected directly to the DUT.

The other method used is called the cold-source or direct-noise method. Instead of using a noise source at the DUT’s input, only a known termination (usually 50 ohms) is needed. However, the cold-source method requires an independent measurement of the DUT’s gain. This method works well with vector network analyzers, since vector error correction can be used to get very accurate gain (S_{21}) measurements. When using the PNA-X, the combination of vector error correction and the PNA-X’s unique source-correction method provides the highest noise figure measurement accuracy in the industry. The other advantage of the cold-source method is that both S-parameter and noise figure measurements can be made with a single connection to the DUT. During system calibration, a noise source is required.

Find out more
www.agilent.com/find/nf

The two main methods of measuring noise figure are:
• Y-factor
• Cold-source

To find out more about these methods see Application Note 57-1, Fundamentals of RF and Microwave Noise Figure Measurements, literature number 5952-8255E.
Measurement uncertainty

There are several key contributions to overall noise figure measurement uncertainty. When selecting a noise figure solution, it is important to choose the method that minimizes the main contributor to overall noise figure uncertainty.

Some of these contributions can be found on instrument data sheets—for example, instrument uncertainty, excess noise ratio (ENR) uncertainty, and jitter—while others depend on the interaction between the test system and the DUT. For example, there are two sources of error due to imperfect system source match (a deviation from the ideal 50 ohms). The first is mismatch error, which results from non-ideal power transfer between the test system and the DUT. The second source of error is from the interaction between the noise generated within the DUT and the source match (Γ_s) seen by the DUT. The following figure compares noise figure measurement uncertainty between the Y-factor method and the cold-source method (as implemented on the PNA-X).

The example amplifier has a noise figure of 3 dB, gain of 15 dB, input and output match of 10 dB, and moderate noise parameters ($F_{\min} = 2.8 \text{ dB}, \Gamma_{opt} = 0.27 + j0, R_n = 37.4$). For the Y-factor method, the uncertainty is calculated in two different ways: one with the noise source connected directly to the DUT, and one with an electrical network simulating the switches and cables from an automated-test-equipment (ATE) setup placed between the noise source and the DUT (with loss correction). The PNA-X example includes the ATE network.

With the Y-factor method, the main sources of error are due to mismatch between the noise source and DUT, as well as the interaction between the noise generated by the DUT and the system. The simulated ATE network (inserted between the noise source and DUT) causes the errors to increase. For the PNA-X’s source-corrected cold-source method, the largest source of error is the ENR uncertainty of the noise source, which affects the measurement of the PNA-X’s internal noise receivers during calibration.
System components for noise figure measurements

Total or overall noise figure of a system is a result of three individual components: the instrument used to measure noise figure, the noise source used in measurements or calibration, and the DUT. The Y-factor method is the basis of most noise figure measurements. It uses a noise source to determine the internal noise in the DUT, while calibrating, and when making measurements. On the other hand, the cold-source method only uses the noise source during calibration, as shown in the figures below.

![Diagram of Y-factor solution](image1)

Y-factor solution

- **DUT**
- Noise source
- Noise figure, signal or spectrum analyzer

![Diagram of Cold-source solution](image2)

Cold-source solution

- **VNA**
- **ECal tuner**
- **DUT**
- **Calibration kit or ECal module**
- **Noise source**

For calibration only:

Figure 2. Basic components needed to make noise figure measurements

Each of the components shown in the figures above are described in greater detail in the following sections. The Y-factor method uses one of three different instruments: NFA and signal/spectrum analyzers with noise figure option. The cold-source technique uses the PNA-X network analyzer with a noise figure option to make noise figure measurements.
Selecting an instrument

With the wide range of instruments that Agilent offers for noise figure, it should be easy to find a solution that fits your noise figure test needs. There are three different types of solution platforms that Agilent offers: dedicated noise figure analyzer, signal/spectrum analyzers, and vector network analyzers. The benefits of each are outlined below:

Noise figure analyzer (NFA): As the leader in noise figure measurement solutions, Agilent offers the only one-box solution for noise figure measurements on the market today. The NFA Series is made exclusively for accurate noise figure measurements, comes with a standard internal preamplifier, and covers three frequency ranges: 3, 6.7, and 26.5 GHz. The NFA Series can also be used with block downconverters to make measurements up to 110 GHz. These analyzers use the Y-factor method to measure noise figure. They offer low instrument noise figure and are a good compromise between a flexible signal/spectrum analyzer and the most accurate network-analyzer-based solutions.

Signal/spectrum analyzers: Adding a noise figure option to a versatile spectrum analyzer is an economical way to add noise figure measurement capabilities. The accuracy and frequency range of this solution depends on which base instrument it is installed. Signal/spectrum analyzers use the Y-factor method to measure noise figure. Preamplification, either external or internal, often improves accuracy.

Network analyzers: If you need the highest noise figure measurement accuracy, choose Agilent’s PNA-X network analyzer with the noise figure option. This solution is based on the cold-source technique, and it allows S-parameter and noise figure measurements with a single connection to the DUT.

When selecting an instrument to meet your needs, it is first important to select an instrument that will cover the frequency range of your DUT. Table 1 below shows all the noise figure solutions that Agilent offers, as well as the frequency ranges at which you can expect hard specifications, nominal specifications, or those that are not recommended for noise figure measurements.

<table>
<thead>
<tr>
<th>Instrument series</th>
<th>200 kHz - 10 MHz</th>
<th>10 MHz - 3 GHz</th>
<th>3 GHz - 26.5 GHz</th>
<th>26.5 GHz - 110 GHz</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>EXA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MXA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>NFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>PNA-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table 1. Agilent offers a wide range of instruments to cover different frequency ranges for noise figure measurements: nominal specifications are specifications based on the testing of an instrument, but are not guaranteed performance; hard specifications are specifications that are proven and guaranteed performance; and actual performance may exceed the numbers listed in the specification guide.
Equally important when selecting an instrument to meet your noise figure needs are the specifications. Please note that this table gives the nominal specifications at 1 GHz for each instrument in order to provide customers with a quick comparison chart. Refer to the individual specifications guide for each product for full specification information, including but not limited to hard specifications vs. nominal specifications at different frequency ranges.

Nominal noise figure specifications at 1 GHz

<table>
<thead>
<tr>
<th>Y-factor instruments</th>
<th>Noise figure instrument uncertainty (dB)</th>
<th>Noise figure gain uncertainty (dB)</th>
<th>Instrument match (VSWR)</th>
<th>Noise figure of the instrument (dB)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA</td>
<td>0.24</td>
<td>0.83</td>
<td>1.40</td>
<td>8.75</td>
<td>15</td>
</tr>
<tr>
<td>EXA</td>
<td>0.03</td>
<td>0.15</td>
<td>1.30</td>
<td>13.00</td>
<td>14</td>
</tr>
<tr>
<td>MXA</td>
<td>0.02</td>
<td>0.10</td>
<td>1.30</td>
<td>9.50</td>
<td>14</td>
</tr>
<tr>
<td>PSA</td>
<td>0.05</td>
<td>0.17</td>
<td>1.10</td>
<td>6.50</td>
<td>13</td>
</tr>
<tr>
<td>NFA</td>
<td>0.05</td>
<td>0.17</td>
<td>1.70</td>
<td>4.75</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cold-source instruments</th>
<th>Linearity</th>
<th>S21 parameter uncertainty</th>
<th>Instrument match</th>
<th>Noise figure of the instrument (dB)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNA-X</td>
<td>0.05</td>
<td>0.05</td>
<td>1.02</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 2. This chart compares the different noise figure solutions at 1 GHz with nominal specifications only; for full specifications, including hard specifications, please refer to the specification guide for each instrument.

Selecting a noise source

When measuring noise figure, the quality of the noise source is crucial for accurate, repeatable measurements. The ENRs of Agilent noise sources are carefully calibrated with traceability to national standards institutes in the U.S. and U.K. The output of a noise source is defined in terms of its frequency range and ENR. Nominal ENR values of 6 dB and 15 dB are commonly available. A low ENR noise source will minimize error due to noise detector non-linearity. This error will be smaller if the measurement is made over a smaller, and therefore more linear, range of the instrument’s detector. A 6 dB noise source uses a smaller detector range than a 15 dB noise source.

Use a 6 dB noise source for:
- Measuring a device with gain that is especially sensitive to changes in the source impedance
- The DUT has a very low noise figure
- The device noise figure does not exceed 15 dB

Use a 15 dB noise source for:
- General-purpose applications to measure noise figure up to 30 dB
- User-calibrating the fullest dynamic range of an instrument before measuring high gain devices

Find out more www.agilent.com/find/nf
Agilent offers three different families of noise sources, with different frequency ranges, source matches, ENR, and connector types. The Smart Noise Source Series simplifies measurement setup by automatically downloading electronically stored calibration data to the instrument, saving valuable engineering time. The traditional 346 Series is the most cost-effective solution—their noise sources offer the widest range of frequency coverage. Lastly, Agilent offers high-frequency noise sources with waveguide interfaces for making measurements above 26.5 GHz.

Agilent noise sources

<table>
<thead>
<tr>
<th>Noise source</th>
<th>ENR- typical</th>
<th>Frequency range</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4000A</td>
<td>4.6 – 6.5 dB</td>
<td>10 MHz – 18 GHz</td>
<td>17</td>
</tr>
<tr>
<td>N4001A</td>
<td>14 – 16 dB</td>
<td>10 MHz – 18 GHz</td>
<td>17</td>
</tr>
<tr>
<td>N4002A</td>
<td>12 – 17 dB</td>
<td>10 MHz – 26 GHz</td>
<td>17</td>
</tr>
<tr>
<td>346A</td>
<td>5 – 7 dB</td>
<td>10 MHz – 18 GHz</td>
<td>18</td>
</tr>
<tr>
<td>346B</td>
<td>14 – 16 dB</td>
<td>10 MHz – 18 GHz</td>
<td>18</td>
</tr>
<tr>
<td>346C</td>
<td>12 – 17 dB</td>
<td>10 MHz – 26 GHz</td>
<td>18</td>
</tr>
<tr>
<td>346C-K01</td>
<td>21 dB</td>
<td>1 GHz – 50 GHz</td>
<td>18</td>
</tr>
<tr>
<td>Q347B</td>
<td>6 – 13 dB</td>
<td>33 GHz – 50 GHz</td>
<td>19</td>
</tr>
<tr>
<td>R347B</td>
<td>10 – 13 dB</td>
<td>26.5 GHz – 40 GHz</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 3. Agilent offers three different families of noise sources to fit within a variety of budgets and test requirements.

The noise source families above work with different instruments, listed below in Table 4.

Noise source support

<table>
<thead>
<tr>
<th>Y-Factor Instruments</th>
<th>SNS Series</th>
<th>346 Series</th>
<th>347 Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>15</td>
</tr>
<tr>
<td>EXA</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>14</td>
</tr>
<tr>
<td>MXA</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>14</td>
</tr>
<tr>
<td>PSA</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>13</td>
</tr>
<tr>
<td>NFA</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>11</td>
</tr>
<tr>
<td>Cold-source instruments</td>
<td>N4000A SNS Series</td>
<td>346 Series</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>PNA-X</td>
<td>▲</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table 4. This table lists noise source and instrument compatibility for noise figure measurements.

Find out more www.agilent.com/find/nf
In order to meet your customer’s unique requirements, Agilent also offers the following special noise source options. Option H10 offers traceability to the National Physics Laboratory (NPL) standards in the U.K., while the other options listed have been requested by customers to make measurements with 3.5 connectors.

<table>
<thead>
<tr>
<th>Specials Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4000A-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>N4001A-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>N4002A-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>346A-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>346B-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>346C-H10</td>
<td>NPL calibrated transfer standard</td>
</tr>
<tr>
<td>346A-H13</td>
<td>Std lab cal at 20 freqs from the data sheet (10 MHz to 18 GHz)</td>
</tr>
<tr>
<td>346B-H01</td>
<td>3.5(m) connector with 21 dB nominal ENR</td>
</tr>
<tr>
<td>346B-H71</td>
<td>Type N (male) connector with 21 dB nominal ENR</td>
</tr>
<tr>
<td>346B-H73</td>
<td>Type N (female) connector with 21 dB nominal ENR</td>
</tr>
<tr>
<td>346B-H42</td>
<td>DBS waveguide adapter and nominal ENR 5 dB</td>
</tr>
<tr>
<td>346C-H01</td>
<td>3.5 (m) connector with 21 dB nominal ENR</td>
</tr>
</tbody>
</table>

Table 5. This table lists the special options that Agilent offers to meet unique noise figure measurement needs.
Device under test (DUT)

Your DUT contributes to the overall noise figure uncertainty based on its individual noise figure, gain, port match, and noise parameters. In general, there are two scenarios to consider when choosing the Y-Factor method. When the output noise of the DUT is well above the input noise of the analyzer, the analyzer with the best instrument uncertainty gives the most accurate results, and the MXA signal analyzer is the best option. If the output noise of the DUT is smaller, select the NFA noise figure analyzer, which gives the lowest uncertainty. Refer to Table 2 for nominal specification comparison of these solutions at 1 GHz.

The following graph shows how DUT gain affects noise figure uncertainty when using a spectrum analyzer or noise figure analyzer. This example is at 1 GHz with a 346A noise source and assumes the DUT has a 2 dB noise figure and 1.5:1 VSWR.

![Graph showing how DUT gain affects noise figure uncertainty](image)

Figure 3. As the gain of a DUT decreases, Y-factor noise figure measurement uncertainty increases; below 10 dB of gain, there are significant differences between the various instrument choices.

The values in the graph above were created via the noise figure uncertainty calculator and nominal specifications at 1 GHz shown in Table 2. The uncertainty calculator can be found at www.agilent.com/find/nfu. The uncertainty calculator can be used for either of the following cases:

Modeling the performance of your system: For this purpose, defaults are available for Agilent’s noise figure instruments and noise sources. These defaults have typical values associated with them and can be useful for estimating the effect individual parameters have in overall uncertainty levels.

Making actual calculations of the uncertainty of your system: You will need to obtain accurate values of all the associated parameters in question, such as match and gain. Please consult the calibration certificates of your instruments to obtain the measured uncertainty parameters of the equipment being used.

Find out more www.agilent.com/find/nf
The NFA Series is a family of dedicated noise figure analyzers designed to provide comprehensive characterization of your DUT. These analyzers offer the traditional benefits of a noise figure meter, plus the added features and functionality most often requested by R&D and production-test engineers and technicians. Ease-of-use features allow any engineer or technician to quickly setup measurements correctly, view those measurements in different formats, and either print the results or save them to a disk. In addition, on-screen limit lines simplify pass/fail testing. Perform your measurements to the exact specifications required with extended frequency coverage, high performance features, and selectable measurement bandwidths. Repeatable, reliable measurements provide results that you can trust. As a result, you will be able to produce more robust designs and prototypes in the lab, and achieve higher yields and throughput in manufacturing.

Features:
- One-box analyzers to 3, 6.7, and 26.5 GHz, with extension to 110 GHz with block downconverters
- Fully specified to 26.5 GHz with internal preamplifier
- Works with Agilent Smart Noise Source Series and 346 Series noise sources
- Internal measurement uncertainty calculator

Literature resources:
- *NFA Series Brochure*, literature number 5980-0166E
- *NFA Series Noise Figure Analyzers Configuration Guide*, literature number 5980-0163E
- *NFA Series Noise Figure Analyzers Data Sheet*, literature number 5980-0164E

Find out more www.agilent.com/find/nfa
Block down conversion:
Noise figure measurements up to 110 GHz

Agilent offers the K-Series block downconverters which extend the upper frequency limit of the N8975A or N9020A-526 from 26.5 GHz up to 110 GHz. The downconverter uses an internal LO to down convert the input signal to an IF that is within the measurement range. The K-Series is offered in 13.5 GHz bands. For example, a customer that would like to do noise figure measurements to 52 GHz would order K40, K50, and K63 in order to bridge from the 26.5 GHz end frequency of their instrument to 52 GHz.

Block downconverter options

- **N8975AZ - K40**
 - (26.5 GHz to 40.0 GHz)
- **N8975AZ - K50**
 - (36.5 GHz to 50.0 GHz)
- **N8975AZ - K63**
 - (50.0 GHz to 63.5 GHz)
- **N8975AZ - K75**
 - (61.5 GHz to 75.0 GHz)
- **N8975AZ - K88**
 - (75.0 GHz to 88.5 GHz)
- **N8975AZ - K98**
 - (86.5 GHz to 100 GHz)
- **N8975AZ - K99**
 - (96.5 GHz to 110 GHz)

Find out more www.agilent.com/find/nfa
The high-performance Agilent PSA Series offers the highest performance in spectrum analysis up to 50 GHz with powerful one-button measurements, a versatile feature set, and a leading-edge combination of flexibility, speed, accuracy, and dynamic range. Expand the PSA to include noise figure measurements with the noise figure measurements personality (Option 219). Use either Option 1DS or 110 to include the internal preamplifier that is needed to meet the hard specifications of the PSA noise figure personality. Although these internal preamplifiers may operate below 10 MHz or above 3 GHz, the noise figure personality gives only nominal specifications outside the 10 MHz to 3 GHz frequency range. DUT setup menus help guide you through amplifier and mixer measurements and a built-in measurement uncertainty calculator makes it easy to qualify your measurement system.

Features:

• Hard specifications between 10 MHz and 3 GHz, with internal preamplifier for best accuracy
• Nominal specifications below 10 MHz and above 3 GHz, internal preamplifier available
• Operates with the Agilent 346 Series noise sources
• Internal measurement uncertainty calculator

Literature resources:

• PSA Series Spectrum Analyzers Noise Figure Measurement Personality, literature number 5988-7884EN
• PSA Series Brochure, literature number 5980-1283E
• PSA Series Configuration Guide, literature number 5989-2773EN
• PSA Series Data Sheet, literature number 5980-1284E
• PSA Specification Guide, literature number E4440-90347

Find out more www.agilent.com/find/psa
Agilent’s N9069A noise figure measurement application offers development engineers a simple tool to make accurate and repeatable noise figure measurements. Pair this measurement application with an Agilent X-Series signal analyzer (MXA/EXA), and engineers can get fully specified results, with internal preamplifier, from 10 MHz to 3.6 GHz with the N9010A EXA, or up to 26.5 GHz with the N9020A MXA. The N9069A noise figure measurement application utilizes the easy user interface and incredible speed of the Agilent X-Series signal analyzers. The built-in help and step-by-step diagrams allow new users to start making measurements instantly and save their results quickly. In addition, the noise figure measurement application is code-compatible with previous Agilent noise figure solutions for similar measurements.

Features:

• Fully specified to 26.5 GHz with optional internal preamplifier on the N9020A MXA signal analyzer
• N9020A MXA can be used with block downconverters for noise figure measurements up to 110 GHz
• Fully specified to 3 GHz with optional internal preamplifier on the N9010A EXA signal analyzer
• Works with Agilent N4000A smart noise sources and 346 Series noise sources
• Internal measurement uncertainty calculator

Literature resources:

• N9069A Noise Figure Measurement Application, Technical Overview with Self-Guided Demonstration, literature number 5989-6536EN
• Agilent MXA Signal Analyzer Brochure, literature number 5989-5047EN
• Agilent EXA Signal Analyzer Brochure, literature number 5989-6527EN
The Agilent ESA-E Series spectrum analyzers with the noise figure measurement personality (Option 219) provides the flexibility of general-purpose spectrum analysis combined with built-in one-button noise figure measurements. This solution automates the measurement process allowing all of the required calculations for noise figure, gain, and related metrics from 10 MHz to 3 GHz to be made at the touch of a button. With other features like DUT setup menus, context-based help, and a built-in uncertainty calculator, the ESA is the solution to help you comprehensively characterize your DUT’s noise figure at a reasonable cost.

Features:
• Hard specifications between 10 MHz and 3.6 GHz, with internal preamplifier for best accuracy
• Works with Agilent N4000A smart noise sources and 346 Series noise sources
• Internal measurement uncertainty calculator

Literature resources:
• ESA-E Series Spectrum Analyzers Noise Figure Measurements, literature number 5989-0215EN
• ESA-E Series Spectrum Analyzers Brochure, literature number 5968-3278E
• ESA Spectrum Analyzer Configuration Guide, literature number 5968-3412E
• ESA Series Spectrum Analyzers Data Sheet, literature number 5968-3386E
• ESA Signal Analyzer Specifications Guide, literature number E4401-90490
The Agilent PNA-X is the industry standard for high-performance microwave network analysis from 10 MHz to 26.5 GHz. This 2- or 4-port network analyzer offers a flexible, single-connection solution for S-parameter, noise figure, intermodulation distortion, compression, and pulsed-RF measurements. Agilent’s unique source-corrected noise figure method (Option 029) builds on the integrated, vector-error-corrected cold-source technique pioneered by the Agilent 8510 network analyzer. Using the PNA-X and an Agilent ECal module configured as an impedance tuner, mismatch and noise-parameter errors due to imperfect system source match are removed, greatly improving the accuracy of the cold-source technique. This approach surpasses the accuracy provided by today’s Y-factor-based noise figure analyzers or spectrum analyzer solutions. With this option built directly into the Agilent PNA-X, the solution provides a complete single-connection, multiple-measurement package for R&D and manufacturing engineers developing and testing low-noise transistors, amplifiers, and transmit/receive (T/R) modules.

Features:
- Unique measurement technique provides the highest accuracy of any noise figure solution on the market
- Measure S-parameters, noise figure, compression, and intermodulation distortion with a single connection to the DUT
- Typically four to ten times faster than NFA (using 51 or 201 points)
- Works with coaxial, in-fixture, or on-wafer devices
- Hard specifications from 10 MHz to 26.5 GHz

Literature resources:
- PNA Series Brochure, literature number 5989-7604EN
- PNA Series Configuration Guide, literature number 5989-7606EN
- PNA-X Data Sheet, literature number N5242-90007

Find out more www.agilent.com/find/pna-x
The SNS smart noise sources can be used in conjunction with the X-Series signal analyzers (MXA/EXA), dedicated noise figure analyzers (NFA), and ESA spectrum analyzers. The SNS noise sources replicate the ENR output and frequency coverage of the traditional 346 Series noise sources; however, they have added benefits. The ENR data is stored in an EPROM and is automatically downloaded to the instrument, saving the need to manually enter the values into the calibration table at each cardinal frequency point. Another key benefit is that a thermistor is built in to the noise source to continually update the analyzer with the correct temperature, yielding more accurate measurements due to automatic temperature compensation/correction.

Features:

• Electronic storage of ENR calibration data decreases the opportunity for user error
• Automatic download of ENR data to the instrument speeds overall set-up time
• Temperature compensation improves measurement accuracy leading to tighter specifications

Literature resources:

• SNS Product Overview, literature number 5988-0081EN

Automatically downloads ENR tables to your instrument

Find out more www.agilent.com/find/sns
The traditional and cost-effective noise source is the 346 Series, which operates with the full range of Agilent noise figure solutions. The 346 Series is categorized by its frequency coverage as well as ENR. Some active devices are sensitive to port match. They exhibit different noise figure values dependent on the source impedance. Noise sources will change their port impedance (SWR) as they are switched from T Hot to T Cold. Noise sources like the 346A have output circuitry that will minimize the impedance changes.

Features:
- Low SWR for reducing noise figure measurement uncertainty
- Individually calibrated ENR values at specific frequencies
- Calibration supplied on floppy disk for easy loading into NFA Series noise figure analyzers

Literature resources:
- *Agilent 346A/B/C Noise Sources: 10 MHz to 26.5 GHz*, literature number 5953-6452B
These waveguide noise sources allow you to make accurate and convenient noise figure measurements on millimeter-wave devices. The 347 Series provides extremely precise broadband noise at the input of the system or component under test. The noise figure meter then processes the ON/OFF ratio of noise power present in the system IF, and provides an accurate reading of noise figure and gain. These noise sources have remarkable ENR stability over time, which allows longer recalibration cycles and more accurate noise figure measurements.

Features:
- Performance and reliability at millimeter-wave frequencies
- Excellent ENR stability over time
- Low SWR

Literature resources:
- Q347B Data Sheet, literature number EPSG084753
- R347B Data Sheet, literature number EPSG084754
The Agilent N2002A noise source test set is a stand-alone instrument that, as part of a calibration system, enables fast, repeatable calibrations with minimal levels of uncertainty. It is needed when making ENR tests on a noise source. This low-cost, easy-to-use test set ensures accurate calibration results, increasing measurement confidence and allowing the development of DUTs with tighter specifications. The N2002A noise source test set operates over a frequency range of 10.0 MHz to 26.5 GHz.

Features:
• Reduces noise figure uncertainty to ensure accurate and repeatable results
• Results traceable to national standard
• Full calibration of all Agilent SNS and 346 noise sources
• Manual control or remote operations using GPIB

Literature resources:
• Using the Agilent N8975A Noise Figure Analyzer and the N2002A Noise Source Test Set, literature number 5988-7229EN
Additional Resources

- *Noise Figure Primer (AN 57)*, literature number 5989-6192EN
- *Fundamentals of RF and Microwave Noise Figure Measurement (AN 57-1)*, literature number 5952-8255E
- *Noise Figure Measurement Accuracy: The Y-Factor Method (AN 57-2)*, literature number 5952-3760E
- *10 Hints for Making Successful Noise Figure Measurements (AN 57-3)*, literature number 5980-0288E
- *Noise Figure Measurements of Frequency Converting Devices (AN 1487)*, literature number 5989-0400EN
- *Non-Zero Noise Figure After Calibration (AN 1484)*, literature number 5989-0270EN
- *Practical Noise Figure Measurement and Analysis for Low-Noise Amplifier Designs (AN 1354)*, literature number 5980-1916E
Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

Agilent

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.