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The Keysight B2900A Precision Source/Measure Unit (SMU) is used for electrochemical measurements 
including two widely applied workflows known as cyclic voltammetry (C-V) and chrono-amperometry. Both 
measurements are based on three-electrode systems including working electrode, reference electrode, and 
counter electrode. In C-V the potential is scanned and the corresponding current of the electrochemical 
redox reaction is measured. The voltages and the current of the oxidation and reduction peaks are measured 
with the values depending on the analyte concentration (Nernst equation) and the kinetic diffusion 
properties (Fick’s law). In chrono-amperometry the current of the redox reaction is measured with respect 
to time at a given constant potential. Two different electrochemical systems are measured including a 
Li-ion cell with TiO2 as the reference electrode and a glucose sensor with a polymer modified electrode. In 
comparison to the conventional potentiostat-based setup the SMU has very sensitive current and voltage 
measurement resolution allowing for instance also small electrode systems with low electrochemical 
currents to be accurately measured. The process control can be done either from the front panel of the SMU 
or by the PC-based Keysight B2900A Quick I/V Measurement Software. Additionally, Keysight EasyEXPERT 
group+ Software allows one to control the entire process from measurement setup and execution to analysis 
and data management. This can be extended also to battery related automated multi-cell electrochemical 
measurements where the change of many individual parameters (for instance the concentrations of ions in 
the electrolyte) is studied in a rack of serial half-cells. 

Summary
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Introduction

The field of electrochemistry, essentially the study of the exchange between electrical 
and chemical energy, is playing an important role in industry and academia as we 
witness increasing investment in energy-focused research areas such as batteries, 
capacitors, energy storage devices, photovoltaics, corrosion, hydrogen cells, 
electrochemical sensors etc. The design of these devices to get optimal performance 
for real-world applications depends largely on the study of molecular electrochemical 
processes that underline the macroscopic function. Electrochemical processes utilize 
redox reactions that consist of individual oxidation and reduction steps. An oxidation 
involves the loss of one or more electrons from a chemical species while a reduction 
is the uptake of one or more electrons. When an oxidation and a reduction are paired 
together in a redox reaction, electrons can flow from the oxidized species to the reduced 
species. That electron flow can either be spontaneously produced by the reaction and 
converted into electricity, as in a galvanic cell, or it can be imposed by an outside source 
to make a non-spontaneous reaction proceed, as in an electrolytic cell. The complete 
galvanic or electrolytic cell as a whole is a two-terminal system like a standard battery. 
For typical experiments, instead of the complete cell a half cell is used which offers 
more flexibility and ease of control. We can picture a complete cell as comprised of two 
half cells in which a half-cell is one of the two electrodes. For the half cell a reference 
electrode (RE), a counter electrode (CE), and a working electrode (WE) are required 
forming a three electrode electrochemical system (please see Figure 1). The voltage 
applied to the WE is the potential difference between WE and RE. The CE provides a 
pathway for the current to flow in the electrochemical cell without passing through 
the RE. For the CE an inert material such as platinum is often used. The RE is usually 
based on Ag/AgCl which comprises a silver wire that is dipped in molten silver chloride 
contained in a glass tube with a porous plug. The WE is usually made of a conductive 
material such as gold or graphite coated with the necessary electrochemically active 
materials. An appropriate electrolyte (aqueous or molten) containing mobile ions will be 
selected based on the electrochemical system (please see Figure 2).
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Figure 1. Schematics of Keysight B2900A SMU for 
three-electrode electrochemistry measurements 
applied to Li-ion cells with TiO2 as working 
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Figure 2. Potentiostat vs SMU setup. (a) The potentiostat gives a constant potential between reference electrode (RE) 
and working electrode (WE) by adjusting the current through the counter electrode (CE). (b, c) In the SMU, high sense 
and high force can be combined forming a three terminal connection similar to a potentiostat.
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Introduction (continued)

A common measurement technique in electrochemistry is cyclic voltammetry (C-V) which 
studies the redox and transport properties in an electrolyte solution. When the potential 
of the WE is more positive than that of a molecular redox couple present in the electrolyte 
solution, the corresponding species is oxidized (i.e. electrons going from the redox solution to 
the electrode) and produce an anodic current (please see Figure 3). Similarly, on the return 
voltage scan, as the WE potential becomes more negative than the reduction potential of the 
redox couple, reduction occurs (i.e. electrons going from the electrode into the redox solution) 
causing a cathodic current. The C-V is thus obtained by measuring the current at the WE 
during the forward and reverse potential scans. Data interpretation of a C-V voltammogram 
thus depends on four observables, namely, the two peak currents and two peak potentials [1]. 
By IUPAC convention, anodic currents are positive and cathodic currents negative. In the case 
of an electrochemistry setup using the potentiostat, the system maintains the potential of the 
WE at a constant level with respect to the RE by adjusting the current at the CE. The voltage 
is then scanned in the forward direction ie. with increasing potential of the WE with respect to 
the RE until the current peak is surpassed. The reverse scan in the opposite direction is then 
carried out with decreasing potential of the WE against the RE. The cyclic voltammetry curve is 
thus generated by plotting the measured current at the WE throughout the complete cycle of 
potential scan.

In the following material we show that the Keysight B2900A Precision Source/Measure Unit 
(SMU) is well suited for electrochemical measurements with its capability to source and 
measure both voltage and current very accurately at 10 fA and 100 nV resolution [2, 3]. No 
hardware or software changes are required to use the SMU for electrochemical 3-electrode 
measurements. The SMU offers multiple options for instrument remote control such as 
the Keysight B2900A Quick I/V Measurement Software which allows users to setup and 
execute measurements easily on a Windows-based PC. The Quick I/V software has also a 
user-friendly GUI that can communicate with the B2900A SMU over LAN, USB and GPIB. In 
addition, the Keysight EasyEXPERT group+ Software supports efficient and repeatable device 
characterization in the entire process from measurement setup and execution to analysis and 
data management. The EasyEXPERT group+ makes it easy to perform complex workflows 
immediately with the ready-to-use measurement and application tests and allows you the 
option of storing test condition and measurement data automatically after each measurement 
in a unique built-in database (workspace), ensuring that valuable information is not lost and that 
measurements can be repeated at a later date.

The B2900A SMU can be used not only for 3-electrode electrochemical C-V measurements but 
also the acquisition of charge-discharge cycles of battery cells is possible using 4-electrode 
Kelvin connections. The enhanced range of 3 A continuous current and 10.5 A pulsed current 
allows to perform these measurements under widely used and realistic conditions without 
the need of a booster amplifier.  Additionally, the B2900A series includes also one and 
two channel models that can be easily cascaded and controlled remotely by the Keysight 
BenchVue software which allows running customized measurement scripts for automated large 
scale measurements. Finally, for very challenging electrochemical measurements including 
nanoscopic electrodes with high resistances and low currents (sub-fA) the B2980 series of 
battery operated Femto/Picoammeters and Electrometers can be used. They provide voltage 
measurement input resistances of more than 200 Tera-Ohm and current measurements down 
to 0.01 fA with significant accuracy. An integrated voltage source up to 1000 V allows thereby 
resistance measurements of up to 10 Peta-Ohm.
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Materials and methods
SMU connections and settings: The four terminals of the SMU are modified to provide a three-ter-
minal connection for a half cell electrochemical system as shown in Figure 2. High force 
and high sense are combined and connected to the working electrode (WE). Low sense is 
connected to the reference electrode (RE) which is a Ag/AgCl electrode, while the low force is 
connected to a platinum electrode as the counter electrode (CE). As shown in Figure 3, when 
the instrument is programmed to source voltage, internal sensing provides a feedback voltage 
that is measured and compared to the programmed voltage level. If the feedback voltage is 
less than the programmed voltage level, then the voltage source is increased until the feedback 
voltage equals the programmed voltage level. Remote sensing compensates for the voltage 
drop in the WE and the compensating unit ensures that the programmed voltage level is 
delivered to the WE. The Keysight B2912A SMU was used as shown in Figure 4 together with 
a liquid cell with three electrodes half-submerged in the solution, and a laptop which has the 
Quick I/V software installed. 
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Figure 3. Principles of Cyclic Voltammetry. (a) SMU circuit for C-V measurement with feedback loop. (b) Input waveform 
feedback voltages for C-V measurement, (c) Principle measures of C-V including cathodic reduction and anodic oxidation.
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Figure 4. SMU connection and setup. Electro-
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Materials and methods (continued)

Quick I/V software: Measurement is set-up and triggered via the Quick I/V software or by direct 
control and display on the SMU panel. As shown in Figure 5, the software allows the setting 
of the measurement function as either the “source & sampling” or “sweep” mode. For C-V the 
“sweep” mode is used in which the starting and ending potentials are entered. The sweeping 
profile is selected and the measurement delay and speed entered. The number of cycles of 
the C-V measurement are specified, followed by the scan rate, number of repeated cycles, 
measurement delay and step size. 

Electrochemical system: 

1. Li-ion: We have studied the C-V measurement of the Lithium intercalation in TiO2 using a 
working electrode formed of 100 nm thick TiO2 on a gold backing on glass, a Pt wire as counter 
electrode, and a Ag/AgCl reference electrode. The electrolyte is Lithium Hydroxide Monohy-
drate LiOH.H2O at a concentration of 1mol/l. 

2. Glucose sensor: The WE is gold coated with an osmium-complex redox mediated polymer [4, 
5] containing the redox enzyme glucose oxidase (GOx). The fabrication and exact composition 
of the redox mediated polymer could be found in References. 4 and 5. Upon contact with the 
WE, glucose undergoes a catalyzed chemical reaction in the presence of this enzyme and 
electrons are donated in sequence from glucose molecules to the WE and measured by the 
SMU as current. The current is proportional to the concentration of glucose in the solution.   

Set potential sweeping profile, range 
and measurement delay and speed

Set count, cycles 
and trigger mode Graphical View of 

measurement Raw data

Trigger

Figure 5. Quick I/V software for C-V curves. Easy and quick measurement on PC using Keysight B2900A Quick I/V 
Measurement Software. Software interface is user friendly in setting the measurement parameters and results could 
be displayed either as raw tabulated data or as graphical plots.
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Results and discussion
To use the B2900A SMU for electrochemical measurements the four quadrant source and 
measurement capabilities of the SMU need to be properly connected to the three terminal con-
nections of the electrochemical half-cell (please see Figure 2). The high sense and high force 
are connected to the WE, while the CE is connected to low force and the RE to the low sense. 
In such configuration, the SMU applies a voltage source for the potential scan between the WE 
and CE. The potential between the RE and WE is measured while the overall applied voltage 
by the SMU is adjusted to maintain the desired potential at the WE with respect to the RE. 
During this process, any resulting current flowing to or from the WE is being measured with the 
SMU resulting in the cyclic voltammogram (C-V) curve (please see Figure 3). Figure 6b shows 
a C-V curve of the redox metal-polymer mediator in glucose buffer solution measured with the 
B2912A. The potential was swept from -0.4 V to 0.8 V with a step size of 2.4 mV corresponding 
to 500 points. The sweep time was set to 2.5 seconds which corresponds to 5 milliseconds per 
point. In order to allow the set potential to stabilize before the measurement of the current the 
parameter “Measure Delay” was set to 500 microseconds. The parameter “Measure Speed”, 
which affects the integration time and therefore the noise level of each measurement, was 
set to “LONG”. The step size was adjusted by setting the number of counts to 500 over the 
potential range. The potential was first scanned starting from -0.4 V to 0.8 V and in the reverse 
direction from 0.8 V to -0.4 V. The voltammogram was measured over two complete cycles.

In this specific electrochemical glucose system, GOx enzymes immobilized on the surface 
of the electrode catalyzed both surface-limited oxidation and reduction of the multi-valent 
osmium metal ion complex (please see Figure 6c). When the enzyme-immobilized electrode 
was immersed in the glucose (ie. the analyte) solution, glucose molecules donated electrons to 
GOx to convert GOx to the reduced form. The reduced form of the GOx subsequently passed 
the electrons to the osmium complex as the mediator to convert it from Os3+ to Os2+. During 
the forward scan (positive-going potential), the peak at ~ 0.4 V corresponds to the oxidation 
reaction of Os2+ to Os3+ in which the peak current, termed as the anodic current, was picked 
up by the SMU when the lost electron was passed to the electrode. In the reverse scan, an
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Results and discussion (continued)

opposite peak at ~ 0.2 V corresponds to the reduction of Os3+ to Os2+ of which the peak current 
is termed as the cathodic current. In the ideal case of a surface-limited redox reaction, these 
two peaks should occur at the same potential but in opposite sides of the current, as also 
observed in this work. The slight shift of the potential of the two current peaks is observed in 
many practical situations due to non-ideal conditions such as capacitive current and limited 
time-constant of the redox reaction. From the C-V curve typically the concentration of the 
analyte and the kinetics of the redox reaction can be observed [5]. The reduction and oxidation 
peaks won’t occur until the potential is sufficiently large to reduce and oxidize the analyte, 
respectively. The corresponding potentials are depending on the concentrations based on the 
Nernst equation. The currents depend on the kinetic rate at which the analyte can diffuse to the 
surface of the electrode according to Fick’s law. 

Another common measurement in electrochemistry is chrono-amperometry where the electro-
lytic current is measured at the WE with respect to time while keeping the potential fixed at the 
WE (please see Figure 7). While in C-V information is received on the specific type of elec-
tro-chemical reaction and corresponding potentials and currents, chrono-amperometry results 
in quantitative electrochemical process kinetic data. Hence chrono-amperometry is usually 
carried out as a complementary measurement to C-V. Figure 7 shows the chrono-amperometry 
measurement of current over time generated by the glucose redox mediator reactions at a 
fixed potential of 0.5 V, compared between potentiostat-based (please see Figure 7c) and 
SMU-based (please see Figure 7d) electrochemical measurement. The current of the redox 
reaction drops substantially within the first few seconds in which the current is based on a large 
non-faradaic component due to charging of the double-layer capacitance at the electrode 
surface. The non-faradaic current decays exponentially with time constant RC, where R is an 
uncompensated resistance and C is the double layer capacitance [4]. 

Finally, we show the application of the SMU to study the Li-ion intercalation in TiO2 electrode 
in aqueous solution (please see Figure 8). TiO2 has an open crystal structure and the Ti4+ ions 
have a variable electronic structure. As a result, TiO2 can accept electrons from different ions 
and provide empty sites for intercalation such as Li+, H+, and Na+. 

A V

Reference
electrode
(Ag/AgCI)

Working
electrode

(TiO2)

Counter
electrode

(Pt)

Electrolyte

Keysight SMU

0.5V

Working electrode

Os2+ Os3+

e-

Osmium bound 
polymer matrix

Glucose
Gluconolactone

e-

e-

WE

CE

RE

VM

Adjustable
Voltage Source

AM

Feedback 
Potential

(a) Chrono-Amperometry Schematics (b) Circuitry

E 
= 

Fi
xe

d 
Po

te
nt

ia
l

Time

I =
 C

ur
re

nt
 a

t W
E

Time

(c) Measurement sketch

0 20 40 60 80 100
5.0x10 -6

1.0x10 -5

1.5x10 -5

C
ur

re
nt

 (A
)

Time (s)
0 20 40 60 80 100 120

1.0x10 -5

1.5x10 -5

2.0x10 -5

C
ur

re
nt

 (A
)

Time (s)

(d) Electrode process (e) Measured by potentiostat (f) Measured by SMU

E = Input 
Fixed
Potential

Figure 7. Chrono-amperometry (current vs time). (a) Current–time set-up schematics and (b) circuit measurement (c) set 
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Results and discussion (continued)

To maintain charge neutrality, electrons will accompany cations such as Li+-ions into the TiO2 
lattice (please see sketch in Figure 1). Lithium intercalation into and de-intercalation from TiO2 
can be expressed as the following ionic reaction while the reversibility of this reaction is related 
to its cycling performance: 

xLi+ + TiO2 + xe- ↔ Lix TiO2

where x is the coefficient for Lithium intercalation. The value of x is related to the morphology, 
microstructure, and surface defects of the TiO2 material. During the Lithium intercalation 
process, the TiO2 is transformed from cubic to orthogonal LixTiO2. We have studied the C-V 
curves of the Lithium intercalation in TiO2 with the SMU using a 3 electrode system with TiO2 
the working electrode (Figure 8a; please see Materials & Methods for more details). As shown 
in the C-V curve in Figure 8b, there is a redox couple during scan comprising of a cathodic 
peak with negative current at about -0.02 V in the reduction process and an anodic peak with 
positive current at 0.38 V in the oxidation process. The peaks can be attributed to the reversible 
insertion at the cathodic peak (intercalation; Li+ ions are reduced and inserted into the TiO2) 
and de-insertion at the anodic peak (de-intercalation; metallic Li from the TiO2 is oxidized to 
Li+ and moves into the electrolyte). The peak current is typically a function of the scan rate (i.e. 
how fast the voltage is swept) and depends on a surface charging mechanism [6].

The case study here presents a unique combination of Lithium titanium oxide (LiTiO2) electrode 
materials combined with an aqueous LiOH electrolyte in contrast to conventional organic and 
polymer-based electrodes. We have chosen LiTiO2 since TiO2-based materials have been one of 
the most widely studied battery materials due to its non-toxicity and high chemical stability. It 
has also been earlier demonstrated that lithium intercalation can be electrochemically induced 
to occur reversibly on TiO2 using a simple aqueous lithium alkali solution. The use of an aqueous 
electrolyte in contrast to organic and polymer electrolytes used in conventional lithium batteries 
has its unique advantages. Aqueous electrolytes could enable the batteries to be applied at 
a higher cycling rate with lower electrolyte resistance since they have higher conductivity as 
compared to their organic and polymer counterparts. With the lower electrolyte impedance 
of the aqueous electrolyte, the lithium batteries could have higher discharge rates and lower 
voltage drops. Such battery materials of high power and high capacity will have potential 
applications for electric vehicles and grid storage [6]. 
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