
Increasing Production Throughput
with Data Acquisition Systems
––
APPLICATION NOTE

http://www.tek.com/keithley
http://www.tek.com

Introduction
While product design is investigated and worked through

to its final state, it is important to be mindful of how units

will be tested both prior to and after the final incorporation

into their enclosure. The design team often provides test

pads at numerous strategic locations on bare printed circuit

boards (PCB), allowing access to points of interest that can

be measured at the test time to ensure the operation and

quality of the product. With its ability to select from up to 80

channels using any of its fifteen measurement functions, the

DAQ6510 Data Acquisition and Multimeter System is a prime

candidate for integration into a test system to help meet

multi-point test needs.

However, system integrators, and the engineering team

that designs and supports them, need to also focus their

attention on throughput and need to find ways to optimize

their systems to allow them to effectively and repeatedly

check for performance and quality. The most obvious

method for increasing throughput is to increase bandwidth

by creating multiple test systems. However, this is typically

not a cost-effective solution, especially when the product is

new and has not generated a return on investment. Therefore,

engineers must turn their attention to the selected set of test

instrumentation for methods that allow them to increase the

speed of their testing.

An engineer may wish to compare the speed of similar

instruments, such as a data acquisition system, to determine

if a newer product will promote greater efficiency. Most

modern data acquisition systems employ switching across

numerous channels to capture measurements. Therefore,

switching hardware options should be evaluated to see what

speed advantages one model might hold over another.

Engineers will also need to consider how their software

will control the test equipment. While accepting default

measurement function settings removes some degree of

detail, the programmer requires a setup that can quickly

begin collecting measurements. These default settings often

include setup latency that can unnecessarily extend test

time as well. Additionally, because the product tends to go

through rigorous evaluation and auditing through its design

lifecycle, measurement tolerances can be loosened during

final test scenarios. Gaining an intimate knowledge of overall

instrument operation can reveal ways to speed up testing and

help eliminate unwanted delay.

As data acquisition systems and their communication

interfaces have evolved. While standard interfaces, such as

GPIB and RS-232, promote confidence and reliability to the

engineer, they may be sacrificing some speed advantages

provided by newer interfaces, such as Ethernet and USB.

The user should evaluate the available options to ensure

2 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

that the speed at which a controlling computer manipulates

the test equipment and extracts readings does not act as a

bottleneck to their testing environment.

Finally, an engineer should look for additional methods

to increase test speed. One such consideration would

be to have instrumentation that allows for on-the-box

processing to help cut down on the amount of overall system

communication necessary to execute testing. The DAQ6510

uses an embedded Test Script Processing (TSP) engine

that promotes the execution of loaded program statements

helping to offset the processing at the computer.

The following examples progressively provide scenarios that

highlight the suggestions above, starting with a simple data

acquisition scan executed on the DAQ6510 and, compared

to its predecessor, the Model 2701. Relay cards and the

types of relays (electromechanical, reed, and solid state)

are briefly discussed and tests executed to provide results

show the performance difference between each. Instrument

configuration is then investigated, showing how deviating

from using the easier default settings can remove delays. Test

cases are also provided to show throughput changes with

respect to the different communication options available with

the DAQ6510. Finally, a test scenario using TSP processing is

shown as an example of how a user might utilize it in their test

environment.

Modernized Instrumentation – a Basic
DC Voltage Scan Comparison
To observe the possible throughput improvements, we

suggest using more modern equipment, which are equipped

with faster processing devices such as microprocessors,

FPGAs, and memory chips. We will compare the test speed

of two instruments by implementing a simple DC voltage scan

on both the newer-generation, DAQ6510, and on the older-

generation, Model 2701. Full details of the test scenario are

as follows:

•	 DC voltage measurements

•	 10-channel scan (channels 101-110) on a Model 7700

Multiplexer card

•	 Scan count of 100 for a total of 1000 readings

•	 Extracted readings from the instrument to the controlling

computer, 50 at a time

•	 All other default settings for each instrument (auto delay,

auto zero, aperture time, etc.) are the same and need not

be manipulated

WWW.TEK.COM | 3

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

The following table provides the SCPI commands used by each instrument to execute the test in question along with

pseudocode in certain spots to help highlight the control of data extraction and timing.

DAQ6510 SCPI Commands Model 2701 SCPI Commands Comments

string dudCntr = ""
string rcvBuffer
int startIndex = 1
int endIndex = 50
int totalRdgs = 0

string dudCntr = ""
string rcvBuffer
int accumVals = 0;

Create a variable to hold the counter for the loop
Create a variable to hold the receive buffer
Create a variable to hold the accumulated values count
Create a variable to hold the total readings count
Create variables to hold the indexes for the loop

*RST *RST Put the instrument in a known state

FORM:DATA:ASCII FORM:DATA ASCII Format data as an ASCII string

FORM:ELEM READ Return the reading with units only

ROUT:SCAN:COUN:SCAN 100 SAMP:COUN 1000 Set Scan(6510)/Sample(2701) Count

FUNC ‘VOLT:DC’, (@101:110) FUNC ‘VOLT:DC’, (@101:110) Set function to DCV

TRAC:CLE TRAC:CLE Clear the reading buffer

TRAC:POIN 1000, "debuffer1" Set the buffer size

ROUT:SCAN:CRE (@101:110) ROUT:SCAN (@101:110) Set the scan list

ROUT:SCAN:LSEL INT Enable the scan

*OPC? *OPC? Check that previous commands are complete before
initiating the scan

INIT INIT Initiate the scan

Delay 50 Delay 50 ms to allow readings to accumulate

while totalRdgs != 1000 while accumVals < 1000 Begin while loop

dudCntr = TRAC:ACT:END? dudCntr = TRAC:NEXT? Check for the last buffer reading

If dudCntr – totalRdgs >= 50 If dudCntr – accumVals > 50 or
dudCntr = 0
DudCntr = ""

Check that there are enough readings to print to the console

rcvBuffer = TRAC:DATA? startIndex,
endIndex, "debuffer1", READ

rcvBuffer = TRAC:DATA:SEL?
accumVals, 50

Return readings in chunks of 50

Print rcvBuffer
totalRdgs = totalRdgs + 50
startIndex = startIndex + 50
endIndex = endIndex + 50
End if
End while

Print rcvBuffer
accumVals = accumVals + 50
End if
End while

Print the contents of the receive buffer to the
console window
Increment indexes
End loop

*OPC? *OPC? Hold for operation to complete

ROUT:SCAN:LSEL NONE Disable the scan

The following table highlights the overall command execution time along with the throughput results in units of readings per

second to provide an understanding of how many measurements the user can expect returned to the test program using

each instrument.

Instrument
Run Time @ Data Acquisition Rate

(readings/second)

DAQ6510 34.12 @29.30

Model 2701 39.75 @25.15

With the DAQ6510 showing greater than six seconds of speed

improvement, we can envision how the new model can be

used on a broader scale and help to reduce overall test time

across multiple test instances.

4 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

Speeding Scan Time Through Relay Type Selection
Another factor you will want to consider with your data acquisition system is switching hardware options available to route your

signals. The relay type used on your multiplexer/switch will have typical specifications for closed and open times (the time it

takes to connect and break signal paths). This directly impacts the speed of your test. The quicker the relays can be closed or

opened, the faster the test process can operate.

There are three main types of relays you will want to be aware of, and the following examples highlight the actuation times as

well as which multiplexer module they are used with.

•	 Electromechanical Relay (Model 7700 Multiplexer Module): <3 ms actuation time

•	 Dry Reed Relay (Model 7703 Multiplexer Module): <1 ms actuation time

•	 Solid State Relay (Model 7710 Multiplexer Module): <500 µs actuation time

Each of the multiplexing modules indicated above are compatible with the DAQ6510 and the Model 2701. Therefore, we can

run the previous code examples and only vary the card model to highlight how the relay type affects the overall test times and

throughput. The table below shows the results of the testing.

Run Time @ Data Acquisition Rate (readings/second)

Scan Card Model 7700 (EM) 7703 (Reed) 7710 (SS)

Instrument
DAQ6510 34.12 @29.30 24.48 @40.84 21.37 @46.78

Model 2701 39.75 @25.15 30.57 @32.71 29.82 @33.53

Not only does the DAQ6510 show better throughput

performance across each multiplexing module, in comparison

to the Model 2701, but we can reduce the test time by

approximately nine seconds when the dry reed relay unit is

used and by approximately twelve seconds when the solid

state relay unit is used.

While these results help to reveal the benefits that you can

reap by selecting a different model of multiplexing card, you

need to be aware that the cards differ in other ways (such as

termination type, number of channels, etc.). We encourage

you to review the datasheets for each of the switching

modules indicated to determine which is best for your setup

and application.

For more information about relay types, timing, and other

switching-related details, download your copy of the

“Data Acquisition Primer: An Introduction to Multi-Channel

Measurement Systems” from www.tek.com .

Instrument Configuration Considerations
for Increased Speed
Many test instruments tend to ship with their default settings

configured to obtain the best measurements at power-up.

This is quite convenient for instruments used on a bench-top

and for manual probing and making measurements. Since

your hands are occupied with holding test leads, you can rely

on the equipment to automate most of the function setup and

focus on the outcome.

While default configurations are excellent for hands-on

usage, certain settings can hinder throughput. The following

list helps to highlight specific settings and provide insight into

how they can slow you down.

•	 Autorange – When applied, this feature automatically

determined the best range for the stimulus

being measured.

•	 Auto Delay – With auto delay selected, the instrument

automatically selects a delay period that will provide

sufficient settling for function changes, autorange

changes, and multi-phase measurements.

WWW.TEK.COM | 5

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com
http://www.tek.com

•	 Auto Zero – To help maintain stability and accuracy

over time and changes in temperature, the instrument

periodically measures internal voltages corresponding to

offsets (zero) and amplifier gains.

•	 Line Cycle Synchronization – Synchronizing A/D

conversions with the power line frequency increases

common mode and normal mode noise rejection. When

line cycle synchronization is enabled, the measurement

is initiated at the first positive-going zero crossing of the

power line cycle after the trigger (which may take several

milliseconds).

•	 Filtering and Math – A digital filter can be used to

stabilize noisy measurements. The displayed, stored,

or transmitted reading is an average of many reading

conversions. Math functions can be applied to

readings to provide a scaled, percentage-based, or

reciprocal result.

•	 Digits Displayed – The more digits of resolution that are

made visible on the display, more processing power is

shared by the measurement engine.

•	 Trigger Delay – This is the applied delay between trigger

signal detection and when the instrument will proceed to

the next step in the measurement process.

•	 Scan Interval – This is the period between the start of

scans and may be set to a duration longer than it takes to

perform a single scan.

•	 Integration Rate – Defines the amount of time the

A/D circuit measures a signal. The integration rate is

expressed in terms of the number of power line cycles

(NPLC). Integral PLCs eliminate line cycle noise by

measuring over a complete power line period and

effectively averaging out the power line noise. Sub-line

cycle integration rates increase reading speed at the

expense of higher noise.

When you are implementing your test scenario in production,

many of these features can be disabled or have their

functionality scaled back. A production-functional test

determines a pass or fail condition based on expected levels

with certain limits. Therefore, you can apply a fixed range and

reduce the measurement delays. Additionally, you may not

want to consider the auto zero feature, due to its additional

measurements, or line cycle synchronization. Filtering may be

unnecessary if your measurements can sustain an acceptable

noise level, and special math functions, in most cases, are

unnecessary. Because production-functional testing implies

that the instrumentation is integrated into a test system,

the display is typically not needed during normal operation,

allowing for the number of digits displayed to be reduced or

to have the display turned off.

Since it works best to show these recommendations in

action, the original test is modified such that:

•	 The voltage range is set at 10 V.

•	 Auto delay and/or channel delay are disabled and/or

set to 0 s.

•	 Auto zero is disabled.

•	 Disable the front panel LCD screen prior to starting the

scan, then re-enable the front panel screen after the scan

is complete but prior to stopping the timer since the SCPI

command is still part of the controlling code.

•	 Line sync is disabled.

•	 Limits testing is turned off.

•	 Channel stats/math is turned off.

•	 The trigger delay and/or scan interval is set to 0 s.

•	 Start with the integration rate (aperture time) set to 1 PLC.

–– Reduce to 0.02 PLC.

–– Reduce further to 0.002 PLC, the lowest possible

setting for the legacy instrument.

6 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

The following table provides the SCPI commands used by each instrument to execute the test in question along with

pseudocode in certain spots to help highlight the control of data extraction and timing.

DAQ6510 SCPI Commands Model 2701 SCPI Commands Comments

string dudCntr = “”
string rcvBuffer
int startIndex = 1
int endIndex = 50
int totalRdgs = 0

string dudCntr = “”
string rcvBuffer
int accumVals = 0;

Create a variable to hold the counter for the loop
Create a variable to hold the receive buffer
Create a variable to hold the accumulated values count
Create a variable to hold the total readings count
Create variables to hold the indexes for the loop

*RST *RST Put the instrument in a known state

FORM:DATA:ASCII FORM:DATA ASCII Format data as an ASCII string

FORM:ELEM READ Return the reading with units only

ROUT:SCAN:COUN:SCAN 100 SAMP:COUN 1000 Set Scan(6510)/Sample(2701) Count

FUNC ‘VOLT:DC’, (@101:110) FUNC ‘VOLT:DC’, (@101:110) Set function to DCV

VOLT:RANG 10, (@101:110) VOLT:RANG 10, (@101:110) Set fixed range at 10 V

VOLT:NPLC 1, (@101:110) VOLT:NPLC 1, (@101:110) Set integration rate to 1 PLC

DISP:LIGH:STAT OFF DISP:ENAB OFF Turn off the display

VOLT:DEL:AUTO OFF, (@101:110) TRIG:DEL:AUTO OFF Turn off auto delay

ROUT:CHAN:DEL 0, (@101:110) TRIG:DEL 0 Set channel/trigger delay to 0 s

ROUT:SCAN:INT 0 Set scan interval to 0 s

VOLT:AVER:STAT OFF, (@101:110) Disable background statistics

CALC:VOLT:MATH:STAT OFF Turn off math operations

CALC2:VOLT:LIM1:STAT OFF, (@101:110)
CALC2:VOLT:LIM2:STAT OFF, (@101:110)

CALC3:OUTP OFF Turn off limit tests

VOLT:AZER:STAT OFF, SYST:AZER:STAT OFF Turn off auto zero

VOLT:LINE:SYNC OFF, SYST:LSYN OFF Turn off line sync

CALC3:LIM1:STAT OFF, (@101:110) Turn off limits

TRAC:CLE TRAC:CLE Clear the reading buffer

TRAC:POIN 1000, “debuffer1” Set the buffer size

ROUT:SCAN:CRE (@101:110) ROUT:SCAN (@101:110) Set the scan list

ROUT:SCAN:LSEL INT Enable the scan

*OPC? *OPC? Check that previous commands are complete before
initiating the scan

INIT INIT Initiate the scan

Delay 50 Delay 50 ms to allow readings to accumulate

while totalRdgs != 1000 while accumVals < 1000 Begin while loop

dudCntr = TRAC:ACT:END? dudCntr = TRAC:NEXT? Check for the last buffer reading

If dudCntr – totalRdgs >= 50 If dudCntr – accumVals > 50 or
dudCntr = 0
DudCntr = “”

Check that there are enough readings to print to
the console

rcvBuffer = TRAC:DATA? startIndex,
endIndex, “debuffer1”, READ

rcvBuffer = TRAC:DATA:SEL?
accumVals, 50

Return readings in chunks of 50

Print rcvBuffer
totalRdgs = totalRdgs + 50
startIndex = startIndex + 50
endIndex = endIndex + 50
End if
End while

Print rcvBuffer
accumVals = accumVals + 50
End if
End while

Print the contents of the receive buffer to the
console window
Increment indexes
End loop

*OPC? *OPC? Hold for operation to complete

DISP:LIGH:STAT ON DISP:ENAB ON Turn on the display

ROUT:SCAN:LSEL NONE Disable the scan

WWW.TEK.COM | 7

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

The table below highlights the overall command execution time along with the throughput results in units of readings per

second to help determine how many measurements the user can expect returned to the test program using each instrument.

In comparison to the previous test cases, you can immediately see how applying direct control of measurement functions and

features yields a 300% speed improvement for just the combination of the DAQ6510 + Model 7700.

Run Time @ Data Acquisition Rate (readings/second)

Scan Card Model 7700
(EM)

7703
(Reed)

7710
(SS)

7700
(EM)

7703
(Reed)

7710
(SS)

7700
(EM)

7703
(Reed)

7710
 (SS)

Integration Rate 1 PLC 0.02 PLC 0.002 PLC

Instrument
DAQ6510 27.67

@36.14
18.83

@53.08
17.80

@56.16
11.33

@88.25
2.51

@398.41
1.46

@680.74
11.28

@88.61
2.42

@412.88
1.37

@727.27

Model 2701 29.04
@34.42

20.14
@49.64

19.49
@51.30

12.64
@79.10

3.72
@268.46

3.10
@322.37

12.36
@80.85

3.45
@289.52

3.09
@323.62

In the previous example, we limited the integration time to

0.002 PLC because it is the lowest that the Model 2701 can

achieve. The DAQ6510 can use a 0.0005 PLC integration

time. However, this does not mean that the runtime will be cut

by more than half or the number of readings per channel are

more than doubled. As is the case for all equipment, at some

point, the hardware itself will become a limiting factor and will

offset any additional throughput gains that might be achieved.

In this case, unless the run time provides millisecond or

microsecond resolution, you may not immediately witness

benefits until the amount of measurements acquired

increases.

The following table is provided to show that, while we can run

with the lowest possible integration time on the DAQ6510,

the system runs to its limits and with no significant speed

performance gains unless the instrument is used as a single-

channel DMM.

Run Time @ Data Acquisition Rate
(readings/second)

Scan Card Model 7700 (EM) 7703 (Reed) 7710 (SS)

Integration Rate 0.0005 PLC

Instrument DAQ6510 11.28 @88.61 2.42 @412.03 1.36 @733.14

For a comprehensive table showing the speed advantages

of the above examples as well as a comparison against a

primary competitor’s solution, see Appendix A.

Communications Interface Selection
Considerations
Because a test system is typically composed of more

instruments than just a data acquisition instrument and

a controlling computer, you will need to consider what

communications tools will best suit your setup. Because VISA

simplifies the software, providing application programming

interface (API) plugins that make read, write, and query

operations effortless and appear nearly identical, you can put

more thought into the hardware interface.

While GPIB has been an industry standard for test

instrumentation control for many years, a GPIB controller

is required by your computer, adding some cost. Serial,

also known as RS-232, is reliable and has been around for

even longer and is used for communications beyond a test

environment. Some control elements for the serial option

have additional settings, but, once these are addressed,

the communication is not much different from using GPIB.

The cost of a serial interface is far less than GPIB, which is

appealing. However, the speed advantage of GPIB over serial

(480 Mb/s for high-speed controllers compared to 115,200

baud, respectively) may justify the additional cost of a GPIB

interface when throughput is a concern.

Ethernet, or LAN, connectivity is appealing since LAN is

the standard interface used on most computers and allows

instrumentation to be accessed from virtually any location.

This promotes the integration of additional software tools

8 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

directly on the instrument, such as embedded web interfaces

and virtual front panels that can be used for general control

or debugging. Ethernet has great speed potential and can

get the user more data in shorter amounts of time. Whether

working at 10 Mb/s, 100 Mb/s, or 1 Gb/s, keep in mind that

computer networking rules and limitations still apply. The

more devices connected to and utilizing a network the greater

the chance for a reduction in bandwidth and speed. While

hooking up to your corporate network may not yield the

best results in data transfer speed, creating a private local

network, by using an extra Ethernet port or adapter, can help

to remove bottleneck conditions.

With USB 2.0 and 3.0 offering faster data rates, up to 480

Mb/s and 5 Gb/s, it is appealing to engineers who need

to quickly transfer data large amounts of data with the

lowest latency possible. USB is also a standard interface on

computers and is becoming a more common interface on test

instrumentation. One criticism, however, is that USB can be

susceptible to noise in a production test environment. You

can help to limit the effect of noise with proper shielding.

The DAQ6510 supports all four communications interfaces

listed above, with USB 2.0 and Ethernet delivered as a

standard part of the product. Executing the optimized

scanning example above with each interface yields the results

shown in the table below.

Some things to note:

•	 USB is 2.0 as indicated above

•	 GPIB-HS indicates that the “high speed” GPIB-to-USB

device was used to show fastest possible speed with

a GPIB connection, reaching up to 480Mb/s (same

as USB 2.0)

•	 RS-232 baud rate set to 115,200

Run Time @ Data Acquisition Rate
(readings/second)

Scan Card Model 7700 (EM) 7703 (Reed) 7710 (SS)

Integration Rate 0.002 PLC

In
te

rf
ac

e USB 10.96 @91.19 2.22 @450.25 1.05 @950.57

Ethernet 11.28 @88.61 2.42@412.88 1.37 @727.27

GPIB-HS 10.99 @90.93 2.25 @443.66 1.09 @917.43

RS-232 11.07 @90.32 2.33 @429.18 1.94 @514.40

USB shows the strongest performance here providing about

4% greater throughput than the second-best performer.

All previous examples have offered insight on potential

throughput enhancements with respect to scanning across

multiple points. We should also acknowledge the common

case of data logging on a single point and measurement

function, where you may want to acquire as much data as

quickly as possible and stream it to your computer for further

analysis. The DAQ6510 includes a 1 MS/s digitizer that can

sample through its front terminals and any of the configured,

switched channels.

Regarding streaming readings from your test instrument,

the DAQ6510, as well as the DMM6500 and DMM7510, can

achieve streaming rates up to 100 k readings/second using

the USB interface. For more on this topic, including examples,

visit the Keithley product pages on the tek.com website.

Reduce Communication Overhead and
Computer Processing
The previous section noted different instrument control

protocol possibilities, and the speed throughput expectations

when sending and receiving with the same series of SCPI

commands. In the examples above, we presented the SCPI

commands in their abbreviated form – the more verbose

form aids in user understanding as the commands hold

more characters to help better define the action the specific

command performs. The advantage of the abbreviated form

is that the user can achieve the same outcome sending fewer

characters. Every ASCII character sent and received takes

time to propagate from sender to receiver. Therefore, fewer

characters translates to less communication time.

Additionally, a host computer manages all the computer-to-

instrument communication and test program execution. While

newer computer architectures better support multi-threaded

applications using multi-core processors, it would be

advantageous to discover methods to reduce the processing

burden on the computer to allow it to use its resources to

perform other activities.

WWW.TEK.COM | 9

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

Let us consider how Keithley Instruments addresses this

issue with Test Script Processor (TSP®) enabled instruments.

TSP instruments operate like conventional instruments

by responding to a sequence of commands sent by the

controller. You can send individual commands to the TSP-

enabled instrument the same way you would when using any

other instrument. Unlike conventional instruments, TSP-

enabled instruments can execute automated test sequences

independently, without an external controller. You can load a

series of TSP commands into the instrument using a remote

computer or the front-panel port with a USB flash drive. You

can store these commands as a script that can be run later

by sending a single command message to the instrument, or

load and run from the front panel. The primary tradeoffs are

programming complexity versus throughput. Relatively simple

programming techniques will allow noticeable throughput

improvements. Slightly more complex programming (using

TSP-based instruments and programming “best practices”)

can produce significantly higher throughput gains.

As an example of how you might use TSP to your advantage,

let us use the code samples in the appendix to provide some

insight, with details as follows:

•	 Appendix B: TSP function file to be loaded on to

the DAQ6510

•	 Appendix C: Python Example Using TSP Command Calls

to Execute Scans

•	 Appendix D: Python Example Using SCPI Command

Calls to Execute Scans

Note that the entire contents of the Lua script file (named

“scanFunctions.lua “) found in Appendix B is loaded

directly on to the target instrument by the Python code of

Appendix C:

def load _ functions(s):
 # This function opens the scanFunctions.lua file in the same directory
 # as the Python script and transfers its contents to the DAQ6510
 # internal memory. All the functions defined in the file are callable
 # by the controlling program.
 func _ file = open(functions _ path, “r”)
 contents = func _ file.read()
 func _ file.close()
 s.send(“if loadfuncs ~= nil then “
 “script.delete(‘loadfuncs’) “
 “end\n”.encode())
 s.send(“loadscript loadfuncs\n{0}\nendscript\n”
 .format(contents)
 .encode())
 s.send(“loadfuncs()\n”.encode())
 print(s.recv(100).decode())

We consider this part of the initialization phase, so when your test program launches for the first time the file is loaded only

once. All of the functions contained within that file are local to the instrument and are now callable by their simpler function

name. Therefore, to configure the test in question – one that scans temperature on four channels, DC voltage on four channels,

two-wire resistance on three channels, four-wire resistance on three channels, and DC current on two channels – we send the

following either in SCPI or in TSP:

10 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

SCPI Setup Calls TSP Setup Call

cnfgSpeedScan() cnfgSpeedScan()

 cnfgFunc(s, fnc, chLst)

 cnfgSetRng(s, fnc, rng, chLst)

 cnfgSetNplc(s, fnc, nplc, chLst)

 enblAZero(s, fnc, 0, chLst)

 enblADelay(s, fnc, 0, chLst)

 enblLimit(s, fnc, 0, 0, chLst)

 enblLineSync(s, fnc, 0, chLst)

 setScanList(s, chLst)

 setScanCount(s, cnt)

 setScn2Scn(s, s2sInt)

 sendOpc()

All of the indented functions in the column of SCPI Setup Calls will issue at least one command string of several ASCII

characters each. We will say the average command string length is twenty characters, meaning that to perform one of the speed

scan setups will require the computer to issue 220 characters. To perform all five will require 1100, and this is just for the setups.

In comparison, one TSP command (with passed arguments) may require forty characters, but issued five times may only require

200 characters. Now consider sending either the SCPI or TSP setup commands to test 100 devices, and you can see how the

character transmission count for the SCPI implementation far exceeds that of TSP.

Also, consider the scenario in the examples where the instrument is polled for scan completion: five times for either

implementation. While the TSP implementation (waitScanCmplt()) uses 14 characters and the SCPI implementation

(TRIG:STAT?) uses 10 characters, only the former can have its command call shortened to use fewer characters.

The following table shows the performance comparison for a DCV scan looped ten times using both the SCPI and TSP code

instances found in the appendices. As in the above examples, we optimize each setup for the best speed achievable by fixing

measure ranges, turning off auto delay and auto zero, reducing the integration time to 0.001 PLC, disabling line sync and limits

testing, and use the Model 7710 solid-state multiplexer module.

Command Set Performance Compare

Command Set SCPI TSP
Run Time (seconds) 2.232 1.871

Finally, regardless of whichever command set you choose, you should consider using binary data transfers in lieu of ASCII,

which is the default reading format for measurement instruments. The binary format is condensed and separates consecutive

readings by byte size (four for single precision data and eight for double precision) and removes the need for a comma separator

that is commonly used with the ASCII format.

As an example, we capture one reading from the DAQ6510 using ASCII format, which may read back as many as 13 characters,

or thirteen bytes. One reading using single precision binary format will read back four bytes. As the number of bytes your

program reads back for any given test instance increases, you can start to gain an appreciation for the binary formats and the

potential throughput advantages they can provide.

WWW.TEK.COM | 11

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

Conclusion
For increasing your production test throughput, you will want to consider more than just purchasing modern equipment.

Your multiplexer module options can provide you additional advantages, with reed relays having faster actuation time than

electromechanical relays, and solid-state relays being the fastest of the three. Having a deep understanding of your target

values and permissible tolerances will help you make the best decisions of when you can apply fixed ranges and turn off

certain time-consuming instrument features, allowing you to better balance the tradeoffs of speed versus accuracy. Your

communications interface can affect test performance as well, so you should consider your needs as defined by your test

system and what your company approves. Finally, you should investigate the byte reducing capabilities that can be achieved

when TSP programming is implemented, while also choosing to transfer large amounts of data using binary format.

Appendix A – A Speed Comparison with the Keysight 34972A
The following chart provides speed comparison information for the Model 2701, DAQ6510 and the Keysight 34972A using

comparable multiplexer hardware and communication tools. The electromechanical relay multiplexer module used for the

Keithley instruments is the Model 7700; for Keysight it is the 34901A. The reed relay multiplexer for the Keithley instruments is

the Model 7703; for Keysight it is the 34902A. The solid-state relay multiplexer for Keithley instruments is the Model 7701.

Configuration:

•	 Measure Function: DC Voltage

•	 Auto Delay: Off

•	 Auto Zero: Off

•	 Line Sync: Off

•	 Calculations/Math: Off

•	 Ranged: 10V (fixed)

•	 Channel Delay: 0 s

•	 Trigger Delay/Scan Interval: 0s

•	 Readings Format: Reading only in ASCII

 NPLC 0.02 0.002 0.0005

 Relay Type EM Reed SS EM Reed SS EM Reed SS

Model 2701
Ethernet

12.37 s @
80.8 rdg/s

3.74 s @
268.5 rdg/s

3.12 s @
320.3 rdg/s

12.37 s @
80.8 rdg/s

3.45 s @
289.8 rdg/s

3.10 s @
321.7 rdg/s - - -

Keysight 34972A
Ethernet

16.88 s @
59.2 rdg/s

5.14 s @
194.9 rdg/s N/A - - - - - -

DAQ6510 (SCPI)
Ethernet

11.24 s @
88.9 rdg/s

2.54 s @
399.0 rdg/s

1.34 s @
745.2 rdg/s

11.24 s @
88.9 rdg/s

2.40 s @
416.1 rdg/s

1.22 s @
815.0 rdg/s

11.24 s @
88.9 rdg/s

2.40 s @
416.5 rdg/s

1.21 s @
824.4 rdg/s

DAQ6510 (SCPI)
USB

11.0 s @
88.4 rdg/s

2.03 s @
434.4 rdg/s

1.01 s @
878.0 rdg/s

11.0 s @
89.2 rdg/s

2.03 s @
432.3 rdg/s

1.03 s @
973.7 rdg/s

11.0 s @
88.9 rdg/s

2.03 s @
432.9 rdg/s

1.00 s @
988.1 rdg/s

12 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

Appendix B – TSP Function File Loaded on to the DAQ6510
The following is the TSP (Lua) script loaded on to the DAQ6510 prior to testing which aids in reducing the communication

transactions necessary to execute test sequences. All primary functions called by the upper level controlling program are

highlighted.

function rst()
	 -- Call reset w/ reduced number of characters
	 reset()
	 print(“OK”)
end

function cnfgFunc(fnc, chLst)
	 -- Set the measurement functions for the scan
	 if fnc == 0 then
	 -- Scan Temperature
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ FUNCTION, dmm.FUNC _ TEMPERATURE)
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ REF _ JUNCTION, dmm.REFJUNCT _ INTERNAL)
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ THERMOCOUPLE, dmm.THERMOCOUPLE _ K)
	 elseif fnc == 1 then
		 -- Scan DC Volts
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ FUNCTION, dmm.FUNC _ DC _ VOLTAGE)
	 elseif fnc == 2 then
		 -- Scan 2-Wire Resistance
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ FUNCTION, dmm.FUNC _ RESISTANCE)
	 elseif fnc == 3 then
		 -- Scan 4-Wire Resistance
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ FUNCTION, dmm.FUNC _ 4W _ RESISTANCE)
	 elseif fnc == 4 then
		 -- Scan DC Amps
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ FUNCTION, dmm.FUNC _ DC _ CURRENT)
	 end
end

function cnfgSetRng(chLst, rng)
	 -- Set the measurement function range
	 channel.setdmm(chLst, dmm.ATTR _ MEAS _ RANGE, rng)
end

function cnfgSetNplc(chLst, nplc)
	 -- Set the measurement integration time via NPLCs
	 channel.setdmm(chLst, dmm.ATTR _ MEAS _ NPLC, nplc)
end

function enblAZero(chLst, state)
	 -- Set the state of Auto Zero
	 if state == 0 then
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ AUTO _ ZERO, dmm.OFF)
	 else
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ AUTO _ ZERO, dmm.ON)
	 end
end

function enblADelay(chLst, state)
	 if state == 0 then
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ AUTO _ DELAY, dmm.DELAY _ OFF)
	 else
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ AUTO _ DELAY, dmm.DELAY _ ON)
	 end
end

function enblLimit(chLst, use1, use2)
	 if use1 == 0 then

WWW.TEK.COM | 13

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LIMIT _ ENABLE _ 1, dmm.OFF)
	 else
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LIMIT _ ENABLE _ 1, dmm.ON)
	 end
	
	 if use2 == 0 then
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LIMIT _ ENABLE _ 2, dmm.OFF)
	 else
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LIMIT _ ENABLE _ 2, dmm.ON)
	 end
end

function enblLineSync(chLst, state)
	 if state == 0 then
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LINE _ SYNC, dmm.OFF)
	 else
		 channel.setdmm(chLst, dmm.ATTR _ MEAS _ LINE _ SYNC, dmm.ON)
	 end
end

function setScanList(chLst)
	 scan.create(chLst)
end

function setScanCount(cnt)
	 scan.scancount = cnt
end

function setScn2Scn(stosIntvl)
	 scan.scaninterval = stosIntvl
end

function scanInit()
	 trigger.model.initiate()
end

function cnfgSpeedScan(fnc, chLst, rng, nplc, cnt, s2sInt)
	 -- Apply the measure function
	 cnfgFunc(fnc, chLst)
	
	 -- Set the measure range; not for Temp which is fixed
	 if fnc ~= 0 then
		 cnfgSetRng(chLst, rng)
	 end
	
	 -- Set the measure integration rate
	 cnfgSetNplc(chLst, nplc)
	
	 -- Disable auto zero
	 enblAZero(chLst, 0)
	
	 -- Disable auto delay
	 enblADelay(chLst, 0)
	
	 -- Disable limits checking
	 enblLimit(chLst, 0, 0)
	
	 -- Disable line synchronization
	 enblLineSync(chLst, 0)
	
	 -- Set the scan list
	 setScanList(chLst)
	
	 -- Set the scan count

14 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

	 setScanCount(cnt)
	
	 -- Set the scan to scan interval
	 setScn2Scn(s2sInt)
	
	 -- Ensure that all setup operations have completed
	 opc()
	 print(“OK”)
end

function init()
	 trigger.model.initiate()
	 opc()
	 print(“OK”)
end

function chkTrgMdl()
	 present _ state, n = trigger.model.state() -- state, present block number
	 if (present _ state == trigger.STATE _ RUNNING) or (present _ state == trigger.STATE _
WAITING) then
	 print(“1”)
	 else
	 print(“0”)
	 end
end

function getRdgs()
	 printbuffer(1, defbuffer1.n, defbuffer1)
end

print(“functions loaded”)

Appendix C – Python Example Using TSP Command Calls to Execute Scans
The following is the Python script loads a TSP function then executes a DCV speed scan ten times and prints the results to the

display along with the program run time.

Communications Optimization Consideration Program Example...
import socket
import struct
import math
import time
import datetime

ip _ address = “192.168.1.69” # Place your instrument’s IP address here.
scktNum = 5025 # Define the instrument socket number
functions _ path = “scanFunctions.lua” # This file holds the set of TSP (Lua-
 # based) functions that are called by
 # the Python script to help minimize the
 # amount of bytes needed to setup up and
 # extract readings from the instrument.
 # The file is opened and written to
 # the target instrument. The calling
				 # program only needs to call the short
				 # function names and not a whole series
				 # of verbose commands.
									
def load _ functions(s):
 # This function opens the scanFunctions.lua file in the same directory
 # as the Python script and transfers its contents to the DAQ6510
 # internal memory. All the functions defined in the file are callable
 # by the controlling program.
 func _ file = open(functions _ path, “r”)

WWW.TEK.COM | 15

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

 contents = func _ file.read()
 func _ file.close()
 s.send(“if loadfuncs ~= nil then “
 “script.delete(‘loadfuncs’) “
 “end\n”.encode())
 s.send(“loadscript loadfuncs\n{0}\nendscript\n”
 .format(contents)
 .encode())
 s.send(“loadfuncs()\n”.encode())
 print(s.recv(100).decode())
	
def send _ reset(s):
 # This function issues the reset that clears all existing
 # instrument settings.
 s.send(“rst()\n”.encode())
 s.recv(10)
	
def send _ cnfgSpeedScan(s, fnc, scanList, rng, nplc, cnt, s2sInt):
 # This function configures the speed scan setup as
 # defined by the passed parameters.
 sndBuffer = “cnfgSpeedScan({0},{1},{2},{3},{4},{5})\n”.format(fnc, scanList, rng, nplc, cnt, s2sInt)
 s.send(sndBuffer.encode())
 s.recv(10)

def send _ init(s):
 # This function issues the reset that clears all existing
 # instrument settings.
 s.send(“init()\n”.encode())
 s.recv(10)

def send _ waitForScan(s):
 # This function issues the reset that clears all existing
 # instrument settings.
 s.send(“chkTrgMdl()\n”.encode())
 response = (int)(s.recv(10))
 while (response == 1):
 s.send(“chkTrgMdl()\n”.encode())
 response = (int)(s.recv(10))

def get _ ScanData(s):
 # This function extracts the scanned readings
 # from the DAQ6510
 s.send(“getRdgs()\n”.encode())
 response = s.recv(1024).decode()
 return response

Main body of our program...
#configure, trigger, transfer
s = socket.socket() # Establish a TCP/IP socket object
s.connect((ip _ address, scktNum)) # Connect to the instrument

nplc = 0.001 # Set the integration rate
cnt = 1 # Set the scan count
s2sInt = 0 # Set the scan to scan interval

t1 = datetime.datetime.now() # Capture the start time of our operation

load _ functions(s)

send _ reset(s)

Configure DC Voltage scan
dcvScanList = ‘\’101:110\’’
rng = 10

16 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

send _ cnfgSpeedScan(s, 1, dcvScanList, rng, nplc, cnt, s2sInt)

for j in range(0, 10):
 send _ init(s)
 send _ waitForScan(s)
 print(get _ ScanData(s))

s.close() # Close the socket.

t2 = datetime.datetime.now() # Capture the stop time of the operation
delta = t2-t1
print(“Run time: {0:.0f} ms”.format(delta.total _ seconds() * 1000))

input(“Press Enter to continue...”)
exit()

Appendix D – Python Example Using SCPI Command Calls to Execute Scans
The following is the Python script leverages SCPI commands to execute a DCV speed scan ten times and prints the results to

the display along with the program run time. The primary commands called during the main program are highlighted, but the

underlying functions require the transmission of several characters.

Communications Optimization Consideration Program Example...
import socket
import struct
import math
import time
import datetime

ip _ address = “192.168.1.69” # Place your instrument’s IP address here.
scktNum = 5025 # Define the instrument socket number
	
def send _ reset(s):
 # This function issues the reset that clears all existing
 # instrument settings.
 s.send(“*RST\n”.encode())
 return

def cnfgFunc(s, fnc, chLst):
 # This function sets up the measurment function across
 # scan channels.
 if fnc == 0:
 s.send(‘FUNC \”TEMP\”, (@{0})\n’.format(chLst).encode())
 s.send(‘SENS:TEMP:TRAN TC, (@{0})\n’.format(chLst).encode())
 s.send(‘SENS:TEMP:TC:TYPE K, (@{0})\n’.format(chLst).encode())
 s.send(‘SENS:TEMP:TC:RJUN:RSEL INT, (@{0})\n’.format(chLst).encode())
 elif fnc == 1:
 s.send(‘FUNC \”VOLT\”, (@{0})\n’.format(chLst).encode())
 elif fnc == 2:
 s.send(‘SENS:FUNC \”RES\”, (@{0})\n’.format(chLst).encode())
 elif fnc == 3:
 s.send(‘SENS:FUNC \”FRES\”, (@{0})\n’.format(chLst).encode())
 elif fnc == 4:
 s.send(‘SENS:FUNC \”CURR\”, (@{0})\n’.format(chLst).encode())

 return

def cnfgSetRng(s, fnc, rng, chLst):
 # This function sets the fixed range across scan channels.
 if fnc == 0:
 rng = 0
 elif fnc == 1:

WWW.TEK.COM | 17

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

 s.send(‘SENS:VOLT:RANG {0}, (@{1})\n’.format(rng, chLst).encode())
 elif fnc == 2:
 s.send(‘SENS:RES:RANG {0}, (@{1})\n’.format(rng, chLst).encode())
 elif fnc == 3:
 s.send(‘SENS:FRES:RANG {0}, (@{1})\n’.format(rng, chLst).encode())
 elif fnc == 4:
 s.send(‘SENS:CURR:RANG {0}, (@{1})\n’.format(rng, chLst).encode())

 return

def cnfgSetNplc(s, fnc, nplc, chLst):
 # This function sets the integration rate across scan channels.
 if fnc == 0:
 s.send(‘SENS:TEMP:NPLC {0}, (@{1})\n’.format(nplc, chLst).encode())
 elif fnc == 1:
 s.send(‘SENS:VOLT:NPLC {0}, (@{1})\n’.format(nplc, chLst).encode())
 elif fnc == 2:
 s.send(‘SENS:RES:NPLC {0}, (@{1})\n’.format(nplc, chLst).encode())
 elif fnc == 3:
 s.send(‘SENS:FRES:NPLC {0}, (@{1})\n’.format(nplc, chLst).encode())
 elif fnc == 4:
 s.send(‘SENS:CURR:NPLC {0}, (@{1})\n’.format(nplc, chLst).encode())

 return

def enblAZero(s, fnc, state, chLst):
 # This function sets the state of Auto Zero across scan channels
 if fnc == 0:
 s.send(‘SENS:TEMP:AZER {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 1:
 s.send(‘SENS:VOLT:AZER {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 2:
 s.send(‘SENS:RES:AZER {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 3:
 s.send(‘SENS:FRES:AZER {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 4:
 s.send(‘SENS:CURR:AZER {0}, (@{1})\n’.format(state, chLst).encode())
 #SENS:FRES:AZER ON
 return

def enblADelay(s, fnc, state, chLst):
 # This function sets the state of Auto Delay across scan channels.
 if fnc == 0:
 s.send(‘SENS:TEMP:DEL:AUTO {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 1:
 s.send(‘SENS:VOLT:DEL:AUTO {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 2:
 s.send(‘SENS:RES:DEL:AUTO {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 3:
 s.send(‘SENS:FRES:DEL:AUTO {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 4:
 s.send(‘SENS:CURR:DEL:AUTO {0}, (@{1})\n’.format(state, chLst).encode())

 return

def enblLimit(s, fnc, use1, use2, chLst):
 # This function sets the state of limits checking across scan channels.
 if fnc == 0:
 s.send(‘CALC2:TEMP:LIM1:STAT {0}, (@{1})\n’.format(use1, chLst).encode())
 s.send(‘CALC2:TEMP:LIM2:STAT {0}, (@{1})\n’.format(use2, chLst).encode())
 elif fnc == 1:
 s.send(‘CALC2:VOLT:LIM1:STAT {0}, (@{1})\n’.format(use1, chLst).encode())
 s.send(‘CALC2:VOLT:LIM2:STAT {0}, (@{1})\n’.format(use2, chLst).encode())
 elif fnc == 2:

18 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

 s.send(‘CALC2:RES:LIM1:STAT {0}, (@{1})\n’.format(use1, chLst).encode())
 s.send(‘CALC2:RES:LIM2:STAT {0}, (@{1})\n’.format(use2, chLst).encode())
 elif fnc == 3:
 s.send(‘CALC2:FRES:LIM1:STAT {0}, (@{1})\n’.format(use1, chLst).encode())
 s.send(‘CALC2:FRES:LIM2:STAT {0}, (@{1})\n’.format(use2, chLst).encode())
 elif fnc == 4:
 s.send(‘CALC2:CURR:LIM1:STAT {0}, (@{1})\n’.format(use1, chLst).encode())
 s.send(‘CALC2:CURR:LIM2:STAT {0}, (@{1})\n’.format(use2, chLst).encode())

 return

def enblLineSync(s, fnc, state, chLst):
 # This function sets the state of Line Sync across scan channels.
 if fnc == 0:
 s.send(‘TEMP:LINE:SYNC {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 1:
 s.send(‘VOLT:LINE:SYNC {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 2:
 s.send(‘RES:LINE:SYNC {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 3:
 s.send(‘FRES:LINE:SYNC {0}, (@{1})\n’.format(state, chLst).encode())
 elif fnc == 4:
 s.send(‘CURR:LINE:SYNC {0}, (@{1})\n’.format(state, chLst).encode())

 return

def setScanList(s, chLst):
 # This function sets the active list of scan channels.
 s.send(‘ROUT:SCAN:CRE (@{0})\n’.format(chLst).encode())

 return

def setScanCount(s, cnt):
 # This function sets the number of times the scan will
 # iterate.
 s.send(‘ROUT:SCAN:COUN:SCAN {0}\n’.format(cnt).encode())
 return

def setScn2Scn(s, stosIntvl):
 # This function sets the delay time between the start
 # of one scan to the start of the next.
 s.send(‘ROUT:SCAN:INT {0}\n’.format(stosIntvl).encode())
 return

def sendOpc():
 # This function is issued to allow all blocking commands
 # to complete their operation before moving on to other
 # control commands.
 s.send(‘*OPC\n’.format(cnt).encode())
 return

def cnfgSpeedScan(s, fnc, chLst, rng, nplc, cnt, s2sInt):
 # This function configures the speed scan setup as
 # defined by the passed parameters.
 cnfgFunc(s, fnc, chLst)
 cnfgSetRng(s, fnc, rng, chLst)
 cnfgSetNplc(s, fnc, nplc, chLst)
 enblAZero(s, fnc, 0, chLst)
 enblADelay(s, fnc, 0, chLst)
 enblLimit(s, fnc, 0, 0, chLst)
 enblLineSync(s, fnc, 0, chLst)

 setScanList(s, chLst)
 setScanCount(s, cnt)

WWW.TEK.COM | 19

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

 setScn2Scn(s, s2sInt)

 sendOpc()
 return

def send _ init(s):
 # This function starts a scan.
 s.send(“INIT\n”.encode())
 return

def send _ waitForScan(s):
 # This function is used to poll the DAQ6510 to determine the
 # active trigger state. If RUNNING or WAITING, this means the
 # trigger model is still running and the scan is not done.
 s.send(“TRIG:STAT?\n”.encode())
 response = s.recv(1024).decode()
 #print(response)
 while (response.find(‘RUNNING’) != -1 or response.find(‘WAITING’) != -1) :
 s.send(“TRIG:STAT?\n”.encode())
 response = s.recv(1024).decode()
 return

def get _ ScanData(s, val):
 # This function extracts the scanned readings
 # from the DAQ6510
 s.send(“TRAC:DATA? 1, {0}, \”defbuffer1\”, READ\n”.format(val).encode())
 response = s.recv(1024).decode()
 return response

#===
Main body of our program...
#configure, trigger, transfer
s = socket.socket() # Establish a TCP/IP socket object
s.connect((ip _ address, scktNum)) # Connect to the instrument

nplc = 0.001 # Set the integration rate
cnt = 1 # Set the scan count
s2sInt = 0 # Set the scan to scan interval

t1 = datetime.datetime.now() # Capture the start time of our operation

send _ reset(s)

Configure DC Voltage scan
dcvScanList = ‘101:110’
rng = 10
cnfgSpeedScan(s, 1, dcvScanList, rng, nplc, cnt, s2sInt)

for j in range(0, 10):
 send _ init(s)
 sendOpc()
 send _ waitForScan(s)
 print(get _ ScanData(s, 10))

s.close() # Close the socket.

t2 = datetime.datetime.now() # Capture the stop time of the operation
delta = t2-t1
print(“Run time: {0:.0f} ms”.format(delta.total _ seconds() * 1000))

input(“Press Enter to continue...”)
exit()

20 | WWW.TEK.COM

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

WWW.TEK.COM | 21

Increasing Production Throughput with Data Acquisition Systems APPLICATION NOTE

http://www.tek.com

Contact Information

 Australia* 1 800 709 465

Austria 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 6917 5000

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number.

If not accessible, call: +41 52 675 3777

Rev. 090617

Find more valuable resources at TEK.COM
Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

041618 AH 1KW-61369-0

http://www.tek.com
http://www.tek.com
http://www.tek.com/keithley

