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1.0 Impedance Measurement Basics

1.1 Impedance

Impedance is an important parameter used to characterize electronic circuits, components, and the
materials used to make components. Impedance (Z) is generally defined as the total opposition a
device or circuit offers to the flow of an alternating current (AC) at a given frequency, and is repre-
sented as a complex quantity which is graphically shown on a vector plane. An impedance vector
consists of a real part (resistance, R) and an imaginary part (reactance, X) as shown in Figure 1-1.
Impedance can be expressed using the rectangular-coordinate form R + jX or in the polar form as a
magnitude and phase angle: |Z|_ θ. Figure 1-1 also shows the mathematical relationship between R,
X, |Z|, and θ. In some cases, using the reciprocal of impedance is mathematically expedient. In
which case 1/Z = 1/(R + jX) = Y = G + jB, where Y represents admittance, G conductance, and B sus-
ceptance. The unit of impedance is the ohm (Ω), and admittance is the siemen (S). Impedance is a
commonly used parameter and is especially useful for representing a series connection of resistance
and reactance, because it can be expressed simply as a sum, R and X. For a parallel connection, it is
better to use admittance (see Figure 1-2.)

Figure 1-1. Impedance (Z) consists of a real part (R) and an imaginary part (X)

Figure 1-2. Expression of series and parallel combination of real and imaginary components
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Reactance takes two forms: inductive (XL) and capacitive (Xc). By definition, XL = 2πfL and 
Xc = 1/(2πfC), where f is the frequency of interest, L is inductance, and C is capacitance. 2πf can be
substituted for by the angular frequency (ω: omega) to represent XL = ωL and Xc =1/(ωC). Refer to
Figure 1-3.

Figure 1-3. Reactance in two forms: inductive (XL) and capacitive (Xc)

A similar reciprocal relationship applies to susceptance and admittance. Figure 1-4 shows a typical
representation for a resistance and a reactance connected in series or in parallel.

The quality factor (Q) serves as a measure of a reactance’s purity (how close it is to being a pure
reactance, no resistance), and is defined as the ratio of the energy stored in a component to the
energy dissipated by the component. Q is a dimensionless unit and is expressed as Q = X/R = B/G.
From Figure 1-4, you can see that Q is the tangent of the angle θ. Q is commonly applied to induc-
tors; for capacitors the term more often used to express purity is dissipation factor (D). This quanti-
ty is simply the reciprocal of Q, it is the tangent of the complementary angle of θ, the angle δ shown
in Figure 1-4 (d).

Figure 1-4. Relationships between impedance and admittance parameters
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1.2 Measuring impedance

To find the impedance, we need to measure at least two values because impedance is a complex
quantity. Many modern impedance measuring instruments measure the real and the imaginary parts
of an impedance vector and then convert them into the desired parameters such as |Z|, θ, |Y|, R, X,
G, B, C, and L. It is only necessary to connect the unknown component, circuit, or material to the
instrument. Measurement ranges and accuracy for a variety of impedance parameters are deter-
mined from those specified for impedance measurement.

Automated measurement instruments allow you to make a measurement by merely connecting the
unknown component, circuit, or material to the instrument. However, sometimes the instrument
will display an unexpected result (too high or too low.) One possible cause of this problem is incor-
rect measurement technique, or the natural behavior of the unknown device. In this section, we will
focus on the traditional passive components and discuss their natural behavior in the real world as
compared to their ideal behavior.

1.3 Parasitics: There are no pure R, C, and L components

The principal attributes of L, C, and R components are generally represented by the nominal values
of capacitance, inductance, or resistance at specified or standardized conditions. However, all cir-
cuit components are neither purely resistive, nor purely reactive. They involve both of these imped-
ance elements. This means that all real-world devices have parasitics—unwanted inductance in resis-
tors, unwanted resistance in capacitors, unwanted capacitance in inductors, etc. Different materials
and manufacturing technologies produce varying amounts of parasitics. In fact, many 
parasitics reside in components, affecting both a component’s usefulness and the accuracy with
which you can determine its resistance, capacitance, or inductance. With the combination of the
component’s primary element and parasitics, a component will be like a complex circuit, if it is 
represented by an equivalent circuit model as shown in Figure 1-5.

Figure 1-5. Component (capacitor) with parasitics represented by an electrical equivalent circuit

Since the parasitics affect the characteristics of components, the C, L, R, D, Q, and other inherent
impedance parameter values vary depending on the operating conditions of the components.
Typical dependence on the operating conditions is described in Section 1.5.
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1.4 Ideal, real, and measured values

When you determine an impedance parameter value for a circuit component (resistor, inductor, or
capacitor), it is important to thoroughly understand what the value indicates in reality. The para-
sitics of the component and the measurement error sources, such as the test fixture’s residual
impedance, affect the value of impedance. Conceptually, there are three sorts of values: ideal, real,
and measured. These values are fundamental to comprehending the impedance value obtained
through measurement. In this section, we learn the concepts of ideal, real, and measured values, as
well as their significance to practical component measurements.

• An ideal value is the value of a circuit component (resistor, inductor, or capacitor) that
excludes the effects of its parasitics. The model of an ideal component assumes a purely resis-
tive or reactive element that has no frequency dependence. In many cases, the ideal value can
be defined by a mathematical relationship involving the component’s physical composition
(Figure 1-6 (a).) In the real world, ideal values are only of academic interest.

• The real value takes into consideration the effects of a component’s parasitics (Figure 1-6 (b).)
The real value represents effective impedance, which a real-world component exhibits. The real
value is the algebraic sum of the circuit component’s resistive and reactive vectors, which come
from the principal element (deemed as a pure element) and the parasitics. Since the parasitics
yield a different impedance vector for a different frequency, the real value is frequency dependent. 

• The measured value is the value obtained with, and displayed by, the measurement instrument;
it reflects the instrument’s inherent residuals and inaccuracies (Figure 1-6 (c).) Measured 
values always contain errors when compared to real values. They also vary intrinsically from
one measurement to another; their differences depend on a multitude of considerations in
regard to measurement uncertainties. We can judge the quality of measurements by comparing
how closely a measured value agrees with the real value under a defined set of measurement
conditions. The measured value is what we want to know, and the goal of measurement is to
have the measured value be as close as possible to the real value.

Figure 1-6. Ideal, real, and measured values
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1.5 Component dependency factors

The measured impedance value of a component depends on several measurement conditions, such
as test frequency, and test signal level. Effects of these component dependency factors are different
for different types of materials used in the component, and by the manufacturing process used. The
following are typical dependency factors that affect the impedance values of measured components.

1.5.1 Frequency

Frequency dependency is common to all real-world components because of the existence of para-
sitics. Not all parasitics affect the measurement, but some prominent parasitics determine the com-
ponent’s frequency characteristics. The prominent parasitics will be different when the impedance
value of the primary element is not the same. Figures 1-7 through 1-9 show the typical frequency
response for real-world capacitors, inductors, and resistors.

Figure 1-7. Capacitor frequency response

Figure 1-8. Inductor frequency response
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Figure 1-9. Resistor frequency response

As for capacitors, parasitic inductance is the prime cause of the frequency response as shown in
Figure 1-7. At low frequencies, the phase angle (q) of impedance is around –90°, so the reactance 
is capacitive. The capacitor frequency response has a minimum impedance point at a self-resonant
frequency (SRF), which is determined from the capacitance and parasitic inductance (Ls) of a series
equivalent circuit model for the capacitor. At the self-resonant frequency, the capacitive and induc-
tive reactance values are equal (1/(wC) = wLs.) As a result, the phase angle is 0° and the device is
resistive. After the resonant frequency, the phase angle changes to a positive value around +90° and,
thus, the inductive reactance due to the parasitic inductance is dominant. 

Capacitors behave as inductive devices at frequencies above the SRF and, as a result, cannot be
used as a capacitor. Likewise, regarding inductors, parasitic capacitance causes a typical frequency
response as shown in Figure 1-8. Due to the parasitic capacitance (Cp), the inductor has a maximum
impedance point at the SRF (where wL = 1/(wCp).) In the low frequency region below the SRF, the
reactance is inductive. After the resonant frequency, the capacitive reactance due to the parasitic
capacitance is dominant. The SRF determines the maximum usable frequency of capacitors and
inductors.
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1.5.2 Test signal level

The test signal (AC) applied may affect the measurement result for some components. For example,
ceramic capacitors are test-signal-voltage dependent as shown in Figure 1-10 (a). This dependency
varies depending on the dielectric constant (K) of the material used to make the ceramic capacitor.

Cored-inductors are test-signal-current dependent due to the electromagnetic hysteresis of the core
material. Typical AC current characteristics are shown in Figure 1-10 (b).

Figure 1-10. Test signal level (AC) dependencies of ceramic capacitors and cored-inductors

1.5.3 DC bias

DC bias dependency is very common in semiconductor components such as diodes and transistors.
Some passive components are also DC bias dependent. The capacitance of a high-K type dielectric
ceramic capacitor will vary depending on the DC bias voltage applied, as shown in Figure 1-11 (a).

In the case of cored-inductors, the inductance varies according to the DC bias current flowing
through the coil. This is due to the magnetic flux saturation characteristics of the core material.
Refer to Figure 1-11 (b).

Figure 1-11. DC bias dependencies of ceramic capacitors and cored-inductors
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1.5.4 Temperature

Most types of components are temperature dependent. The temperature coefficient is an important
specification for resistors, inductors, and capacitors. Figure 1-12 shows some typical temperature
dependencies that affect ceramic capacitors with different dielectrics.

1.5.5 Other dependency factors

Other physical and electrical environments, e.g., humidity, magnetic fields, light, atmosphere, vibra-
tion, and time, may change the impedance value. For example, the capacitance of a high-K type
dielectric ceramic capacitor decreases with age as shown in Figure 1-13.

1.6 Equivalent circuit models of components

Even if an equivalent circuit of a device involving parasitics is complex, it can be lumped as the sim-
plest series or parallel circuit model, which represents the real and imaginary (resistive and reac-
tive) parts of total equivalent circuit impedance. For instance, Figure 1-14 (a) shows a complex
equivalent circuit of a capacitor. In fact, capacitors have small amounts of parasitic elements that
behave as series resistance (Rs), series inductance (Ls), and parallel resistance (Rp or 1/G.) In a suf-
ficiently low frequency region, compared with the SRF, parasitic inductance (Ls) can be ignored.
When the capacitor exhibits a high reactance (1/(wC)), parallel resistance (Rp) is the prime determi-
native, relative to series resistance (Rs), for the real part of the capacitor’s impedance. Accordingly,
a parallel equivalent circuit consisting of C and Rp (or G) is a rational approximation to the complex
circuit model. When the reactance of a capacitor is low, Rs is a more significant determinative than
Rp. Thus, a series equivalent circuit comes to the approximate model. As for a complex equivalent
circuit of an inductor such as that shown in Figure 1-14 (b), stray capacitance (Cp) can be ignored in
the low frequency region. When the inductor has a low reactance, (wL), a series equivalent circuit
model consisting of L and Rs can be deemed as a good approximation. The resistance, Rs, of a series
equivalent circuit is usually called equivalent series resistance (ESR).

Figure 1-12. Temperature dependency of ceramic capacitors Figure 1-13. Aging dependency of ceramic capacitors



Figure 1-14. Equivalent circuit models of (a) a capacitor and (b) an inductor

Note: Generally, the following criteria can be used to roughly discriminate between low, middle,
and high impedances (Figure 1-15.) The medium Z range may be covered with an extension of
either the low Z or high Z range. These criteria differ somewhat, depending on the frequency 
and component type.

Figure 1-15. High and low impedance criteria  
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1.7 Measurement circuit modes 

As we learned in Section 1.2, measurement instruments basically measure the real and imaginary
parts of impedance and calculate from them a variety of impedance parameters such as R, X, G, B,
C, and L. You can choose from series and parallel measurement circuit modes to obtain the mea-
sured parameter values for the desired equivalent circuit model (series or parallel) of a component
as shown in Table 1-1.

Table 1-1. Measurement circuit modes

Equivalent circuit models  of component Measurement circuit modes and impedance parameters

Series Series mode: Cs, Ls, Rs, Xs

Parallel Parallel mode: Cp, Lp, Rp, Gp, Bp

Though impedance parameters of a component can be expressed by whichever circuit mode (series
or parallel) is used, either mode is suited to characterize the component at your desired frequencies.
Selecting an appropriate measurement circuit mode is often vital for accurate analysis of the rela-
tionships between parasitics and the component’s physical composition or material properties. One
of the reasons is that the calculated values of C, L, R, and other parameters are different depending
on the measurement circuit mode as described later. Of course, defining the series or parallel equiv-
alent circuit model of a component is fundamental to determining which measurement circuit mode
(series or parallel) should be used when measuring C, L, R, and other impedance parameters 
of components. The criteria shown in Figure 1-15 can also be used as a guideline for selecting the
measurement circuit mode suitable for a component.

Table 1-2 shows the definitions of impedance measurement parameters for the series and parallel
modes. For the parallel mode, admittance parameters are used to facilitate parameter calculations.

Table 1-2. Definitions of impedance parameters for series and parallel modes

Series mode Parallel mode

|Z| = √Rs2 + Xs2 |Y| = √Gp2 + Bp2

q = tan–1 (Xs/Rs) q = tan–1 (Bp/Gp)

Rs: Series resistance Gp: Parallel conductance (= 1/Rp)

Xs: Series reactance (XL = wLs, XC = –1/(wCs)) Bp: Parallel susceptance (BC = wCp, BL = –1/(wLp))

Ls: Series inductance (= XL/w) Lp: Parallel inductance (= –1/(wBL))

Cs: Series capacitance (= –1/(wXC)) Cp: Parallel capacitance (= BC/w)

D: Dissipation factor (= Rs/Xs = Rs/(wLs) or wCsRs) D: Dissipation factor (= Gp/Bp = Gp/(wCp)

Q: Quality factor (= Xs/Rs = wLs/Rs or 1/(wCsRs)) = 1/(wCpRp) or wLpGp = wLp/Rp)

Q: Quality factor (= Bp/Gp = wCp/Gp 

= wCpRp or 1/(wLpGp) = Rp/(wLp))

Gp

±jBp

Rs ±jXs

G

jB

R jX
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Though series and parallel mode impedance values are identical, the reactance (Xs), is not equal to
reciprocal of parallel susceptance (Bp), except when Rs = 0 and Gp = 0. Also, the series resistance
(Rs), is not equal to parallel resistance (Rp) (or reciprocal of Gp) except when Xs = 0 and Bp = 0.
From the definition of Y = 1/Z, the series and parallel mode parameters, Rs, Gp (1/Rp), Xs, and Bp
are related with each other by the following equations:

Z = Rs + jXs = 1/Y = 1/(Gp + jBp) = Gp/(Gp2 + Bp2) – jBp/(Gp2 + Bp2)

Y = Gp + jBp = 1/Z = 1/(Rs + jXs) = Rs/(Rs2 + Xs2) – jXs/(Rs2 + Xs2)

Rs = Gp/(Gp2 + Bp2) ) Rs = RpD2/(1 + D2)

Gp = Rs/(Rs2 + Xs2)  ) Rp = Rs(1 + 1/D2)

Xs = –Bp/(Gp2 + Bp2) ) Xs = Xp/(1 + D2) 

Bp = –Xs/(Rs2 + Xs2) ) Xp = Xs(1 + D2)

Table 1-3 shows the relationships between the series and parallel mode values for capacitance,
inductance, and resistance, which are derived from the above equations. 

Table 1-3. Relationships between series and parallel mode CLR values 

Series Parallel Dissipation factor

(Same value for series and parallel)

Capacitance Cs = Cp(1 + D2) Cp = Cs/(1 + D2) D = Rs/Xs = wCsRs 

D = Gp/Bp = Gp/(wCp) = 1/(wCpRp)

Inductance Ls = Lp/(1 + D2) Lp = Ls(1 + D2) D = Rs/Xs = Rs/(wLs)

D = Gp/Bp = wLpGp = wLp/Rp

Resistance Rs = RpD2/(1 + D2) Rp = Rs(1 + 1/D2) –––––

Cs, Ls, and Rs values of a series equivalent circuit are different from the Cp, Lp, and Rp values of a
parallel equivalent circuit. For this reason, the selection of the measurement circuit mode can
become a cause of measurement discrepancies. Fortunately, the series and parallel mode measure-
ment values are interrelated by using simple equations that are a function of the dissipation factor
(D.) In a broad sense, the series mode values can be converted into parallel mode values and vice
versa.

Gp

±jBp

Rs ±jXs
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Figure 1-16 shows the Cp/Cs and Cs/Cp ratios calculated for dissipation factors from 0.01 to 1.0. As
for inductance, the Lp/Ls ratio is same as Cs/Cp and the Ls/Lp ratio equals Cp/Cs. 

Figure 1-16. Relationships of series and parallel capacitance values

For high D (low Q) devices, either the series or parallel model is a better approximation of the real
impedance equivalent circuit than the other one. Low D (high Q) devices do not yield a significant
difference in measured C or L values due to the measurement circuit mode. Since the relationships
between the series and parallel mode measurement values are a function of D2, when D is below
0.03, the difference between Cs and Cp values (also between Ls and Lp values) is less than 0.1 per-
cent. D and Q values do not depend on the measurement circuit modes.

Figure 1-17 shows the relationship between series and parallel mode resistances. For high D (low Q)
components, the measured Rs and Rp values are almost equal because the impedance is nearly pure
resistance. Since the difference between Rs and Rp values increases in proportion to 1/D2, defining
the measurement circuit mode is vital for measurement of capacitive or inductive components with
low D (high Q.) 

Figure 1-17. Relationships of series and parallel resistance values
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1.8 Three-element equivalent circuit and sophisticated component models

The series and parallel equivalent circuit models cannot serve to accurately depict impedance char-
acteristics of components over a broad frequency range because various parasitics in the compo-
nents exercise different influence on impedance depending on the frequency. For example, capaci-
tors exhibit typical frequency response due to parasitic inductance, as shown in Figure 1-18.
Capacitance rapidly increases as frequency approaches the resonance point. The capacitance goes
down to zero at the SRF because impedance is purely resistive. After the resonant frequency, the
measured capacitance exhibits a negative value, which is calculated from inductive reactance. In the
aspect of the series Cs-Rs equivalent circuit model, the frequency response is attributed to a change
in effective capacitance. The effect of parasitic inductance is unrecognizable unless separated out
from the compound reactance. In this case, introducing series inductance (Ls) into the equivalent
circuit model enables the real impedance characteristic to be properly expressed with three-element
(Ls-Cs-Rs) equivalent circuit parameters. When the measurement frequency is lower than approxi-
mately 1/30 resonant frequency, the series Cs-Rs measurement circuit mode (with no series induc-
tance) can be applied because the parasitic inductance scarcely affects measurements.

Figure 1-18. Influence of parasitic inductance on capacitor 
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When both series and parallel resistances have a considerable amount of influence on the imped-
ance of a reactive device, neither the series nor parallel equivalent circuit models may serve to accu-
rately represent the real C, L, or R value of the device. In the case of the capacitive device shown in
Figure 1-19, both series and parallel mode capacitance (Cs and Cp) measurement values at 1 MHz
are different from the real capacitance of the device. The correct capacitance value can be deter-
mined by deriving three-element (C-Rp-Rs) equivalent circuit parameters from the measured imped-
ance characteristic. In practice, C-V characteristics measurement for an ultra-thin CMOS gate capac-
itance often requires a three-element (C-Rs-Rp) equivalent circuit model to be used for deriving real
capacitance without being affected by Rs and Rp.

Figure 1-19. Example of capacitive device affected by both Rs and Rp

By measuring impedance at a frequency you can acquire a set of the equivalent resistance and reac-
tance values, but it is not enough to determine more than two equivalent circuit elements. In order
to derive the values of more than two equivalent circuit elements for a sophisticated model, a com-
ponent needs to be measured at least at two frequencies. Agilent impedance analyzers have the
equivalent circuit analysis function that automatically calculates the equivalent circuit elements for
three- or four-element models from a result of a swept frequency measurement. The details of selec-
table three-/four-element equivalent circuit models and the equivalent circuit analysis function are
described in Section 5.15.
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1.9 Reactance chart

The reactance chart shows the impedance and admittance values of pure capacitance or inductance
at arbitrary frequencies. Impedance values at desired frequencies can be indicated on the chart
without need of calculating 1/(wC) or wL values when discussing an equivalent circuit model for a
component and also when estimating the influence of parasitics. To cite an example, impedance
(reactance) of a 1 nF capacitor, which is shown with an oblique bold line in Figure 1-20, exhibits 
160 kΩ at 1 kHz and 16 Ω at 10 MHz. Though a parasitic series resistance of 0.1 Ω can be ignored at
1 kHz, it yields a dissipation factor of 0.0063 (ratio of 0.1 Ω to 16 Ω) at 10 MHz. Likewise, though a
parasitic inductance of 10 nH can be ignored at 1 kHz, its reactive impedance goes up to 0.63 Ω at 
10 MHz and increases measured capacitance by +4 percent (this increment is calculated as 1/(1 –
XL/XC) = 1/(1 – 0.63/16).) At the intersection of 1 nF line (bold line) and the 10 nH line at 50.3 MHz,
the parasitic inductance has the same magnitude (but opposing vector) of reactive impedance as
that of primary capacitance and causes a resonance (SRF). As for an inductor, the influence of para-
sitics can be estimated in the same way by reading impedance (reactance) of the inductor and that
of a parasitic capacitance or a resistance from the chart.

Figure 1-20. Reactance chart
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Most of the modern impedance measuring instruments basically measure vector impedance (R + jX)
or vector admittance (G + jB) and convert them, by computation, into various parameters, Cs, Cp,
Ls, Lp, D, Q, |Z|, |Y|, q, etc. Since measurement range and accuracy are specified for the impedance
and admittance, both the range and accuracy for the capacitance and inductance vary depending on
frequency. The reactance chart is also useful when estimating measurement accuracy for capaci-
tance and inductance at your desired frequencies. You can plot the nominal value of a DUT on the
chart and find the measurement accuracy denoted for the zone where the DUT value is enclosed.
Figure 1-21 shows an example of measurement accuracy given in the form of a reactance chart. 
The intersection of arrows in the chart indicates that the inductance accuracy for 1 µH at 1 MHz is 
±0.3 percent. D accuracy comes to ±0.003 (= 0.3/100.) Since the reactance is 6.28 Ω, Rs accuracy is
calculated as ±(6.28 x 0.003) = ±0.019 Ω. Note that a strict accuracy specification applied to various
measurement conditions is given by the accuracy equation.

Figure 1-21. Example of measurement accuracy indicated on a reactance chart
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2.0 Impedance Measurement Instruments

2.1 Measurement methods

There are many measurement methods to choose from when measuring impedance, each of which
has advantages and disadvantages. You must consider your measurement requirements and condi-
tions, and then choose the most appropriate method, while considering such factors as frequency
coverage, measurement range, measurement accuracy, and ease of operation. Your choice will
require you to make tradeoffs as there is not a single measurement method that includes all mea-
surement capabilities. Figure 2-1 shows six commonly used impedance measurement methods, from
low frequencies up to the microwave region. Table 2-1 lists the advantages and disadvantages of
each measurement method, the Agilent instruments that are suited for making such measurements,
the instruments’ applicable frequency range, and the typical applications for each method.
Considering only measurement accuracy and ease of operation, the auto-balancing bridge method is
the best choice for measurements up to 110 MHz. For measurements from 100 MHz to 3 GHz, the RF
I-V method has the best measurement capability, and from 3 GHz and up the network analysis is the
recommended technique.

2-1

Figure 2-1. Impedance measurement method (1 of 3)

When a circuit is adjusted to resonance by adjusting a tuning capac-
itor (C), the unknown impedance Lx and Rx values are obtained from
the test frequency, C value, and Q value. Q is measured directly
using a voltmeter placed across the tuning capacitor. Because the
loss of the measurement circuit is very low, Q values as high as 300
can be measured. Other than the direct connection shown here,
series and parallel connections are available for a wide range of
impedance measurements.

Bridge method

Resonant method

When no current flows through the detector (D), the value of the
unknown impedance (Zx) can be obtained by the relationship of the other
bridge elements. Various types of bridge circuits, employing combinations
of L, C, and R components as the bridge elements, are used for various
applications.



While the RF I-V measurement method is based on the same
principle as the I-V method, it is configured in a different
way by using an impedance-matched measurement circuit
(50 Ω) and a precision coaxial test port for operation at 
higher frequencies. There are two types of the voltmeter and
current meter arrangements that are suited to low imped-
ance and high impedance measurements.

Impedance of DUT is derived from measured voltage and
current values, as illustrated. The current that flows through
the DUT is calculated from the voltage measurement across
a known R. In practice, a low loss transformer is used in
place of the R. The transformer limits the low end of the
applicable frequency range.

The unknown impedance (Zx) can be calculated from measured
voltage and current values. Current is calculated using the voltage
measurement across an accurately known low value resistor (R.) In
practice a low loss transformer is used in place of R to prevent the
effects caused by placing a low value resistor in the circuit. The
transformer, however, limits the low end of the applicable frequency
range.

The reflection coefficient is obtained by measuring the ratio
of an incident signal to the reflected signal. A directional
coupler or bridge is used to detect the reflected signal and a
network analyzer is used to supply and measure the signals.
Since this method measures reflection at the DUT, it is
usable in the higher frequency range.

I-V method

RF I-V method

Network analysis method

Figure 2-1. Impedance measurement method (2 of 3)
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Figure 2-1. Impedance measurement method (3 of 3)

Table 2-1. Common impedance measurement methods

Note: Agilent Technologies currently offers no instruments for the bridge method and the resonant method shaded in the above table.

2-3

DUT

Vx Vr

High Low

Ix Ir

=  RrZx =
Ix

Vx

Vr

Vx

Rr

Auto-balancing bridge method

Zx

Vx =  Ix =  Ir =
Rr

Vr

OSC Z x

The current Ix balances with the current Ir which flows through the range
resistor (Rr), by operation of the I-V converter. The potential at the Low point
is maintained at zero volts (thus called a virtual ground.) The impedance of
the DUT is calculated using the voltage measured at the High terminal (Vx)
and across Rr (Vr).

Note: In practice, the configuration of the auto-balancing bridge differs for
each type of instrument. Generally, an LCR meter, in a low frequency
range typically below 100 kHz, employs a simple operational amplifi-
er for its I-V converter. This type of instrument has a disadvantage in
accuracy at high frequencies because of performance limits of the
amplifier. Wideband LCR meters and impedance analyzers employ
the I-V converter consisting of sophisticated null detector, phase
detector, integrator (loop filter), and vector modulator to ensure a
high accuracy for a broad frequency range over 1 MHz. This type of
instrument can attain to a maximum frequency of 110 MHz.

Advantages Disadvantages Applicable Agilent Common 
frequency measurement applications
range instruments

Bridge • High accuracy (0.1% typ.) • Needs to be manually DC to None Standard
method • Wide frequency balanced 300 MHz lab

coverage by using • Narrow frequency
different types of bridges coverage with a

• Low cost single instrument

Resonant • Good Q accuracy up to • Needs to be tuned to 10 kHz to None High Q
method high Q resonance 70 MHz device 

• Low impedance measurement
measurement accuracy

I-V • Grounded device • Operating frequency 10 kHz to None Grounded 
method measurement range is limited by 100 MHz device

• Suitable to probe-type test transformer used in measurement
needs probe

RF I-V • High accuracy (1% • Operating frequency 1 MHz to 4287A RF 
method typ.) and wide range is limited by 3 GHz 4395A+43961A component

impedance range at high transformer used in E4991A measurement
frequencies test head

Network • High frequency • Recalibration required 300 kHz E5071C RF
analysis range when the measurement and above 4395A component
method • Good accuracy when frequency is changed measurement

the unknown • Narrow impedance
impedance is close to measurement range
the characteristic
impedance

Auto- • Wide frequency • Higher frequency ranges 20 Hz to E4980A Generic 
balancing coverage from LF to HF not available 110 MHz E4981A component
bridge • High accuracy over 4294A measurement
method a wide impedance

measurement range 4294A+42941A1 1. Grounded device
• Grounded device 4294A+42942A1 measurement

measurement
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2.2 Operating theory of practical instruments

The operating theory and key functions of the auto balancing bridge instrument are discussed 
in Sections 2.3 through 2.4. A discussion on the RF I-V instrument is described in Sections 2.5
through 2.7.

2.3 Theory of auto-balancing bridge method

The auto-balancing bridge method is commonly used in modern LF impedance measurement instru-
ments. Its operational frequency range has been extended up to 110 MHz. 

Basically, in order to measure the complex impedance of the DUT it is necessary to measure the
voltage of the test signal applied to the DUT and the current that flows through it. Accordingly, the
complex impedance of the DUT can be measured with a measurement circuit consisting of a signal
source, a voltmeter, and an ammeter as shown in Figure 2-2 (a). The voltmeter and ammeter mea-
sure the vectors (magnitude and phase angle) of the signal voltage and current, respectively. 

Figure 2-2. Principle of auto-balancing bridge method
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The auto-balancing bridge instruments for low frequency impedance measurement (below 100 kHz)
usually employ a simple I-V converter circuit (an operational amplifier with a negative feedback
loop) in place of the ammeter as shown in Figure 2-2 (b). The bridge section works to measure
impedance as follows: 

The test signal current (Ix) flows through the DUT and also flows into the I-V converter. The opera-
tional amplifier of the I-V converter makes the same current as Ix flow through the resistor (Rr) on the
negative feedback loop. Since the feedback current (Ir) is equal to the input current (Ix) flows through
the Rr and the potential at the Low terminal is automatically driven to zero volts. Thus, it is called vir-
tual ground. The I-V converter output voltage (Vr) is represented by the following equation:

Vr = Ir x Rr = Ix x Rr      (2-1)

Ix is determined by the impedance (Zx) of the DUT and the voltage Vx across the DUT as follows:

Ix =   
Vx

(2-2) 
Zx

From the equations 2-1 and 2-2, the equation for impedance (Zx) of the DUT is derived as follows: 

Zx =  
Vx

= Rr  
Vx

(2-3) 
Ix Vr

The vector voltages Vx and Vr are measured with the vector voltmeters as shown in Figure 2-2 (b).
Since the value of Rr is known, the complex impedance Zx of the DUT can be calculated by using
equation 2-3. The Rr is called the range resistor and is the key circuit element, which determines the
impedance measurement range. The Rr value is selected from several range resistors depending on
the Zx of the DUT as described in Section 2.4.3. 

In order to avoid tracking errors between the two voltmeters, most of the impedance measuring
instruments measure the Vx and Vr with a single vector voltmeter by alternately selecting them as
shown in Figure 2-3. The circuit block, including the input channel selector and the vector volt-
meter, is called the vector ratio detector, whose name comes from the function of measuring the 
vector ratio of Vx and Vr. 

Figure 2-3. Impedance measurement using a single vector voltmeter
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Note: The balancing operation that maintains the low terminal potential at zero volts has the 
following advantages in measuring the impedance of a DUT:

(1) The input impedance of ammeter (I-V converter) becomes virtually zero and does not 
affect measurements.

(2) Distributed capacitance of the test cables does not affect measurements because there is 
no potential difference between the inner and outer shielding conductors of (Lp and Lc) 
cables. (At high frequencies, the test cables cause measurement errors as described in 
Section 4.5.) 

(3) Guarding technique can be used to remove stray capacitance effects as described in 
Sections 2.4.7 and 3.4.

Block diagram level discussions for the signal source, auto-balancing bridge, and vector ratio detec-
tor are described in Sections 2.3.1 through 2.3.3.

2.3.1. Signal source section

The signal source section generates the test signal applied to the unknown device. The frequency of
the test signal (fm) and the output signal level are variable. The generated signal is output at the Hc
terminal via a source resistor, and is applied to the DUT. In addition to generating the test signal
that is fed to the DUT, the reference signals used internally are also generated in this signal source
section. Figure 2-4 shows the signal source section block diagram of the Agilent 4294A precision
impedance analyzer. Frequency synthesizer and frequency conversion techniques are employed to
generate high-resolution test signals (1 mHz minimum resolution), as well as to expand the upper
frequency limit up to 110 MHz.

Figure 2-4. Signal source section block diagram 



2.3.2 Auto-balancing bridge section

The auto-balancing bridge section balances the range resistor current with the DUT current while
maintaining a zero potential at the Low terminal. Figure 2-5 (a) shows a simplified circuit model
that expresses the operation of the auto-balancing bridge. If the range resistor current is not bal-
anced with the DUT current, an unbalance current that equals Ix – Ir flows into the null detector at
the Lp terminal. The unbalance current vector represents how much the magnitude and phase angle
of the range resistor current differ from the DUT current. The null detector detects the unbalance
current and controls both the magnitude and phase angle of the OSC2 output so that the detected
current goes to zero. 

Low frequency instruments, below 100 kHz, employ a simple operational amplifier to configure the
null detector and the equivalent of OSC2 as shown in Figure 2-5 (b). This circuit configuration 
cannot be used at frequencies higher than 100 kHz because of the performance limits of the opera-
tional amplifier. The instruments that cover frequencies above 100 kHz have an auto balancing
bridge circuit consisting of a null detector, 0°/90° phase detectors, and a vector modulator as shown
in Figure 2-5 (c). When an unbalance current is detected with the null detector, the phase detectors
in the next stage separate the current into 0° and 90° vector components. The phase detector output
signals go through loop filters (integrators) and are applied to the vector modulator to drive the
0°/90° component signals. The 0°/90° component signals are compounded and the resultant 
signal is fed back through range resistor (Rr) to cancel the current flowing through the DUT. Even if
the balancing control loop has phase errors, the unbalance current component, due to the phase
errors, is also detected and fed back to cancel the error in the range resistor current. Consequently,
the unbalance current converges to exactly zero, ensuring Ix = Ir over a broad frequency range up to
110 MHz. 

If the unbalance current flowing into the null detector exceeds a certain threshold level, the unbal-
ance detector after the null detector annunciates the unbalance state to the digital control section of
the instrument. As a result, an error message such as “OVERLOAD” or “BRIDGE UNBALANCED” is
displayed. 

Figure 2-5. Auto-balancing bridge section block diagram 
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2.3.3 Vector ratio detector section

The vector ratio detector (VRD) section measures the ratio of vector voltages across the DUT, Vx,
and across the range resistor (Vr) series circuit, as shown in Figure 2-6 (b). The VRD consists of an
input selector switch (S), a phase detector, and an A-D converter, also shown in this diagram.) The
measured vector voltages, Vx and Vr, are used to calculate the complex impedance (Zx) in accor-
dance with equation 2-3. 

Figure 2-6. Vector ratio detector section block diagram

In order to measure the Vx and Vr, these vector signals are resolved into real and imaginary compo-
nents, Vx = a + jb and Vr = c + jd, as shown in Figure 2-6 (a). The vector voltage ratio of Vx/Vr is 
represented by using the vector components a, b, c, and d as follows: 

Vx
=  

a + jb
=  

ac + bd
+  j  

bc - ad
(2-4)

Vr       c + jd       c2 + d2 c2 + d2

The VRD circuit is operated as follows. First, the input selector switch (S) is set to the Vx position.
The phase detector is driven with 0° and 90° reference phase signals to extracts the real and imagi-
nary components (a and jb) of the Vx signal. The A-D converter next to the phase detector outputs
digital data for the magnitudes of a and jb. Next, S is set to the Vr position. The phase detector and
the A-D converter perform the same for the Vr signal to extract the real and imaginary components
(c and jd) of the Vr signal.

From the equations 2-3 and 2-4, the equation that represents the complex impedance Zx of the DUT
is derived as follows (equation 2-5): 

Zx = Rx + jXx = Rr  
Vx 

= Rr [ac + bd 
+ j

bc - ad] (2-5)
Vr        c2 + d2 c2 + d2

The resistance and the reactance of the DUT are thus calculated as: 

Rx = Rr 
ac + bd

,  Xx = Rr  
bc - ad

(2-6)
c2 + d2 c2 + d2 

Various impedance parameters (Cp, Cs, Lp, Ls, D, Q, etc) are calculated from the measured Rx and
Xx values by using parameter conversion equations which are described in Section 1.
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(a) Vector diagram of Vx and Vr (b) Block diagram 

DU T
R r

H c

L c

L p

H p

V X

V r

ATT A/D
Buffer

Buffer Phase
detector

To digital
section

  

S

0º

0º, 90º

2-8



2-9

2.4 Key measurement functions

The following discussion describes the key measurement functions for advanced impedance mea-
surement instruments. Thoroughly understanding these measurement functions will eliminate the
confusion sometimes caused by the measurement results obtained.

2.4.1. Oscillator (OSC) level

The oscillator output signal is output through the Hc terminal and can be varied to change the test
signal level applied to the DUT. The specified output signal level, however, is not always applied
directly to the DUT. In general, the specified OSC level is obtained when the High terminal is open.
Since source resistor (Rs) is connected in series with the oscillator output, as shown in Figure 2-7,
there is a voltage drop across Rs. So, when the DUT is connected, the applied voltage (Vx) depends
on the value of the source resistor and the DUT’s impedance value. This must be taken into 
consideration especially when measuring low values of impedance (low inductance or high capaci-
tance). The OSC level should be set as high as possible to obtain a good signal-to-noise (S/N) ratio
for the vector ratio detector section. A high S/N ratio improves the accuracy and stability of the
measurement. In some cases, however, the OSC level should be decreased, such as when measuring
cored-inductors, and when measuring semiconductor devices in which the OSC level is critical for
the measurement and to the device itself.

Figure 2-7. OSC level divided by source resistor (Rs) and DUT impedance (Zx)
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2.4.2 DC bias

In addition to the AC test signal, a DC voltage can be output through the Hc terminal and applied to
the DUT. A simplified output circuit, with a DC bias source, is shown in Figure 2-8. Many of the 
conventional impedance measurement instruments have a voltage bias function, which assumes that
almost no bias current flows (the DUT has a high resistance.) If the DUT’s DC resistance is low, a
bias current flows through the DUT and into the resistor (Rr) thereby raising the DC potential of the
virtual ground point. Also, the bias voltage is dropped at source resistor (Rs.) As a result, the speci-
fied bias voltage is not applied to the DUT and, in some cases, it may cause measurement error.
This must be taken into consideration when a low-resistivity semiconductor device is measured.

The Agilent 4294A precision impedance analyzer (and some other impedance analyzers) has an
advanced DC bias function that can be set to either voltage source mode or current source mode.
Because the bias output is automatically regulated according to the monitored bias voltage and cur-
rent, the actual bias voltage or current applied across the DUT is always maintained at the setting
value regardless of the DUT’s DC resistance. The bias voltage or current can be regulated when the
output is within the specified compliance range.

Inductors are conductive at DC. Often a DC current dependency of inductance needs to be mea-
sured. Generally the internal bias output current is not enough to bias the inductor at the required
current levels. To apply a high DC bias current to the DUT, an external current bias unit or adapter
can be used with specific instruments. The 42841A and its bias accessories are available for high
current bias measurements using the Agilent E4980A, 4284A, and 4285A precision LCR meters.

Figure 2-8. DC bias applied to DUT referenced to virtual ground
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2.4.3 Ranging function

To measure impedance from low to high values, impedance measurement instruments have several
measurement ranges. Generally, seven to ten measurement ranges are available and the instrument
can automatically select the appropriate measurement range according to the DUT’s impedance.
Range changes are generally accomplished by changing the gain multiplier of the vector ratio 
detector, and by switching the range resistor (Figure 2-9 (a).) This insures that the maximum signal
level is fed into the analog-to-digital (A-D) converter to give the highest S/N ratio for maximum 
measurement accuracy.

The range boundary is generally specified at two points to give an overlap between adjacent ranges.
Range changes occur with hysteresis as shown in Figure 2-9 (b), to prevent frequent range changes
due to noise.

On any measurement range, the maximum accuracy is obtained when the measured impedance is
close to the full-scale value of the range being used. Conversely, if the measured impedance is much
lower than the full-scale value of the range being used, the measurement accuracy will be degraded.
This sometimes causes a discontinuity in the measurement values at the range boundary. When the
range change occurs, the impedance curve will skip. To prevent this, the impedance range should be
set manually to the range which measures higher impedance.

Figure 2-9. Ranging function
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2.4.4 Level monitor function

Monitoring the test signal voltage or current applied to the DUT is important for maintaining accu-
rate test conditions, especially when the DUT has a test signal level dependency. The level monitor
function measures the actual signal level across the DUT. As shown in Figure 2-10, the test signal
voltage is monitored at the High terminal and the test signal current is calculated using the value of
range resistor (Rr) and the voltage across it.

Instruments equipped with an auto level control (ALC) function can automatically maintain a 
constant test signal level. By comparing the monitored signal level with the test signal level setting
value, the ALC adjusts the oscillator output until the monitored level meets the setting value. There
are two ALC methods: analog and digital. The analog type has an advantage in providing a fast ALC
response, whereas the digital type has an advantage in performing a stable ALC response for a wide
range of DUT impedance (capacitance and inductance.)

Figure 2-10. Test signal level monitor and ALC function

2.4.5 Measurement time and averaging

Achieving optimum measurement results depends upon measurement time, which may vary accord-
ing to the control settings of the instrument (frequency, IF bandwidth, etc.) When selecting the 
measurement time modes, it is necessary to take some tradeoffs into consideration. Speeding up
measurement normally conflicts with the accuracy, resolution, and stability of measurement results.
The measurement time is mainly determined by operating time (acquisition time) of the A-D 
converter in the vector ratio detector. To meet the desired measurement speed, modern impedance
measurement instruments use a high speed sampling A-D converter, in place of the previous tech-
nique, which used a phase detector and a dual-slope A-D converter. Measurement time is propor-
tional to the number of sampling points taken to convert the analog signal (Edut or Err) into digital
data for each measurement cycle. Selecting a longer measurement time results in taking a greater
number of sampling points for more digital data, thus improving measurement precision.
Theoretically, random noise (variance) in a measured value proportionately decreases inversely to
the square root of the A-D converter operating time.
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Averaging function calculates the mean value of measured parameters from the desired number of
measurements. Averaging has the same effect on random noise reduction as that by using a long
measurement time.

Figure 2-11. Relationship of measurement time and precision

2.4.6 Compensation function

Impedance measurement instruments are calibrated at UNKNOWN terminals and measurement
accuracy is specified at the calibrated reference plane. However, an actual measurement cannot be
made directly at the calibration plane because the UNKNOWN terminals do not geometrically fit to
the shapes of components that are to be tested. Various types of test fixtures and test leads are used
to ease connection of the DUT to the measurement terminals. (The DUT is placed across the test 
fixture’s terminals, not at the calibration plane.) As a result, a variety of error sources (such as resid-
ual impedance, admittance, electrical length, etc.) are involved in the circuit between the DUT and
the UNKNOWN terminals. The instrument’s compensation function eliminates measurement errors
due to these error sources. Generally, the instruments have the following compensation functions:

• Open/short compensation or open/short/load compensation
• Cable length correction

The open/short compensation function removes the effects of the test fixture’s residuals. 
The open/short/load compensation allows complicated errors to be removed where the open/short
compensation is not effective. The cable length correction offsets the error due to the test lead’s
transmission characteristics.
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The induced errors are dependent upon test frequency, test fixture, test leads, DUT connection 
configuration, and surrounding conditions of the DUT. Hence, the procedure to perform compensa-
tion with actual measurement setup is the key to obtaining accurate measurement results. The 
compensation theory and practice are discussed comprehensively in Section 4.

2.4.7 Guarding

When in-circuit measurements are being performed or when one parameter of a three-terminal
device is to be measured for the targeted component, as shown in Figure 2-12 (a), the effects of par-
alleled impedance can be reduced by using guarding techniques. The guarding techniques can also
be utilized to reduce the outcome of stray capacitance when the measurements are affected by the
strays present between the measurement terminals, or between the DUT terminals and a closely
located conductor. (Refer to Section 3.5 for the methods of eliminating the stray capacitance effects.)

The guard terminal is the circuit common of the auto-balancing bridge and is connected to the
shields of the four-terminal pair connectors. The guard terminal is electrically different from the
ground terminal, which is connected directly to the chassis (Figure 2-12 (b).) When the guard is
properly connected, as shown in Figure 2-12 (c), it reduces the test signal's current but does not
affect the measurement of the DUT’s impedance (Zx) because Zx is calculated using DUT current (Ix.)

The details of the guard effects are described as follows. The current (I1) which flows through Z1,
does not flow into the ammeter. As long as I1 does not cause a significant voltage drop of the applied
test signal, it scarcely influences on measurements. The current I2, which is supposed to flow
through Z2, is small and negligible compared to Ix, because the internal resistance of the ammeter
(equivalent input impedance of the auto-balancing bridge circuit) is very low in comparison to Z2. In
addition, the potential at the Low terminal of the bridge circuit, in the balanced condition, is zero
(virtual ground.) However, if Z2 is too low, the measurement will become unstable because ammeter
noise increases.

Note: In order to avoid possible bridge unbalance and not cause significant measurement errors, Z2

should not be lower than certain impedance. Minimum allowable value of Z2 depends on Zx,
test cable length, test frequency, and other measurement conditions.

The actual guard connection is shown in Figure 2-12 (d). The guard lead impedance (Zg) should be
as small as possible. If Zg is not low enough, an error current will flow through the series circuit of
Z1 and Z2 and, it is parallel with Ix.

Note: Using the ground terminal in place of the guard terminal is not recommend because the
ground potential is not the true zero reference potential of the auto-balancing bridge circuit.
Basically, the ground terminal is used to interconnect the ground (chassis) of the instrument
and that of a system component, such as an external bias source or scanner, in order to 
prevent noise interference that may be caused by mutual ground potential difference.
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Figure 2-12. Guarding techniques

2.4.8 Grounded device measurement capability

Grounded devices such as the input/output of an amplifier can be measured directly using the I-V
measurement method or the reflection coefficient measurement method (Figure 2-13 (a).) However,
it is difficult for an auto-balancing bridge to measure low-grounded devices because the measure-
ment signal current bypasses the ammeter (Figure 2-13 (b).) Measurement is possible only when the
chassis ground is isolated from the DUT’s ground. (Note: The 4294A used with the Agilent 42941A
impedance probe kit or the Agilent 42942A terminal adapter will result in grounded measurements.)

Figure 2-13. Low-grounded device measurement
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2.5 Theory of RF I-V measurement method

The RF I-V method featuring Agilent’s RF impedance analyzers and RF LCR meters is an advanced
technique to measure impedance parameters in the high frequency range, beyond the frequency cov-
erage of the auto-balancing bridge method. It provides better accuracy and a wider impedance range
than the network analysis (reflection coefficient measurement) instruments can offer. This section
discusses the brief operating theory of the RF I-V method using a simplified block diagram as shown
in Figure 2-14.

Figure 2-14. Simplified block diagram for RF I-V method

The signal source section generates an RF test signal applied to the unknown device and typically
has a variable frequency range from 1 MHz to 3 GHz. Generally, a frequency synthesizer is used 
to meet frequency accuracy, resolution, and sweep function needs. The amplitude of signal source
output is adjusted for the desired test level by the output attenuator.

The test head section is configured with a current detection transformer, V/I multiplexer, and test
port. The measurement circuit is matched to the characteristic impedance of 50 Ω to ensure opti-
mum accuracy at high frequencies. The test port also employs a precision coaxial connector of 50 Ω
characteristic impedance. Since the test current flows through the transformer in series with the
DUT connected to the test port, it can be measured from the voltage across the transformer’s wind-
ing. The V channel signal, Edut, represents the voltage across the DUT and the I channel signal (Etr)
represents the current flowing through the DUT. Because the measurement circuit impedance is
fixed at 50 Ω, all measurements are made in reference to 50 Ω without ranging operation.

The vector ratio detector section has similar circuit configurations as the auto-balancing 
bridge instruments. The V/I input multiplexer alternately selects the Edut and Etr signals so that 
the two vector voltages are measured with an identical vector ratio detector to avoid tracking 
errors. The measuring ratio of the two voltages derives the impedance of the unknown device as 
Zx = 50 × (Edut/Etr.) To make the vector measurement easier, the mixer circuit down-converts the
frequency of the Edut and Etr signals to an IF frequency suitable for the A-D converter’s operating
speed. In practice, double or triple IF conversion is used to obtain spurious-free IF signals. Each
vector voltage is converted into digital data by the A-D converter and is digitally separated into 0°
and 90° vector components.
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2.6 Difference between RF I-V and network analysis measurement methods

When testing components in the RF region, the RF I-V measurement method is often compared with
network analysis. The difference, in principle, is highlighted as the clarifying reason why the RF I-V
method has advantages over the reflection coefficient measurement method, commonly used with
network analysis.

The network analysis method measures the reflection coefficient value (Γx) of the unknown device.
Γx is correlated with impedance, by the following equation:

Γx = (Zx - Zo)/(Zx + Zo)

Where, Zo is the characteristic impedance of the measurement circuit (50 Ω) and Zx is the DUT
impedance. In accordance with this equation, measured reflection coefficient varies from –1 to 1
depending on the impedance (Zx.) The relationship of the reflection coefficient to impedance is
graphically shown in Figure 2-15. The reflection coefficient curve in the graph affirms that the DUT
is resistive. As Figure 2-15 indicates, the reflection coefficient sharply varies, with difference in
impedance (ratio), when Zx is near Zo (that is, when Γx is near zero). The highest accuracy is
obtained at Zx equal to Zo because the directional bridge for measuring reflection detects the “null”
balance point. The gradient of reflection coefficient curve becomes slower for lower and higher
impedance, causing deterioration of impedance measurement accuracy. In contrast, the principle of
the RF I-V method is based on the linear relationship of the voltage-current ratio to impedance, as
given by Ohm’s law. Thus, the theoretical impedance measurement sensitivity is constant, regardless
of measured impedance (Figure 2-16 (a).) The RF I-V method has measurement sensitivity that is
superior to the reflection coefficient measurement except for a very narrow impedance range
around the null balance point (Γ = 0 or Zx = Zo) of the directional bridge.

Figure 2-15. Relationship of reflection coefficient to impedance

Note: Measurement sensitivity is a change in measured signal levels (∆V/I or ∆V/V) relative to a
change in DUT impedance (∆Z/Z.) The measurement error approximates to the inverse of the
sensitivity.
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The reflection coefficient measurement never exhibits such high peak sensitivity for capacitive and
inductive DUTs because the directional bridge does not have the null balance point for reactive
impedance. The measurement sensitivity of the RF I-V method also varies, depending on the DUT’s
impedance, because the measurement circuit involves residuals and the voltmeter and current
meter are not ideal (Figure 2-16 (b).) (Voltmeter and current meter arrangement influences the mea-
surement sensitivity.) Though the measurable impedance range of the RF I-V method is limited by
those error sources, it can cover a wider range than in the network analysis method. The RF I-V
measurement instrument provides a typical impedance range from 0.2 Ω to 20 kΩ at the calibrated
test port, while the network analysis is typically from 2 Ω to 1.5 kΩ (depending upon the required
accuracy and measurement frequency.)

Figure 2-16. Measurement sensitivity of network analysis and RF I-V methods

Note: Typical impedance range implies measurable range within 10 percent accuracy.

Moreover, because the vector ratio measurement is multiplexed to avoid phase tracking error and,
because calibration referenced to a low loss capacitor can be used, accurate and stable measure-
ment of a low dissipation factor (high Q factor) is enabled. The Q factor accuracy of the network
analysis and the RF I-V methods are compared in Figure 2-17.
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Figure 2-17. Comparison of typical Q accuracy

2.7 Key measurement functions

2.7.1 OSC level

The oscillator output signal is output through the coaxial test port (coaxial connector) with a source
impedance of 50 Ω. The oscillator output level can be controlled to change the test signal level
applied to the DUT. Specified test signal level is obtained when the connector is terminated with a
50 Ω load (the signal level for open or short condition is calculated from that for 50 Ω.) When a 
DUT is connected to the measurement terminals, the current that flows through the DUT will cause
a voltage drop at the 50 Ω source impedance (resistive.) The actual test signal level applied to 
the device can be calculated from the source impedance and the DUT’s impedance as shown in
Figure 2-7. Those instruments equipped with a level monitor function can display the calculated test
signal level and measurement results.

2.7.2 Test port

The test port of the RF I-V instrument usually employs a precision coaxial connector to ensure opti-
mum accuracy throughout the high frequency range. The coaxial test port allows RF test fixtures to
be attached and the instrument to be calibrated using traceable coaxial standard terminations. The
test port is a two-terminal configuration and does not have a guard terminal separate from a ground
terminal. Therefore, the guarding technique does not apply as well to the RF I-V measurements as
compared to network analysis.
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2.7.3 Calibration

Most of the RF vector measurement instruments, such as network analyzers, need to be calibrated
each time a measurement is initiated or a frequency setting is changed. The RF I-V measurement
instrument requires calibration as well. At higher frequencies, a change in the instrument’s operat-
ing conditions, such as environmental temperature, humidity, frequency setting, etc., have a greater
effect on measurement accuracy. This nature of RF vector measurement makes it difficult to suffi-
ciently maintain the calibrated measurement performance over a long period of time. Thus, users
have to periodically perform requisite calibration.

Note: Calibration is necessary each time a measurement setup is changed.

Calibration is executed in reference to three standard terminations: open, short, and load. All three
must be performed. To improve the accuracy of low dissipation factor measurements (high Q 
factor), calibration with a low-loss capacitor can be performed. The theory of calibration and appro-
priate calibration methods are discussed in Section 4.

2.7.4 Compensation

Two kinds of compensation functions are provided: open/short compensation for eliminating the
errors due to test fixture residuals, and electrical length compensation for minimizing the test port
extension induced error. Practical compensation methods are discussed in Section 4.

2.7.5 Measurement range

The RF I-V measurement method, as well as network analysis, covers the full measurement range
from low impedance to high impedance without ranging operation. All measurements are made at
single broad range.

2.7.6 DC bias

The internal DC bias source is connected to the center conductor of the coaxial test port and applies
a bias voltage to the DUT. The internal bias function can be set to either the voltage source mode or
the current source mode. The voltage source mode is adequate to the voltage-biased measurement of
the capacitive DUT. The current source mode is to the current-biased measurement of the inductive
DUT. Actual bias voltage and current across the DUT are monitored and, within specified
voltage/current output compliance ranges, automatically regulated at the same level as the bias set-
ting value regardless of the DUT’s DC resistance, thus allowing accurate DC bias to be applied
across the DUT. Since the internal bias source cannot output bias current large enough for inductor
measurements, generally, current-biased measurement (in excess of maximum output current)
requires an external bias method be used. For biasing up to 5 A and 40 V in a frequency range below
1 GHz, the Agilent 16200B external DC bias adapter compatible with RF I-V instruments is available.



3.0 Fixturing and Cabling

Connecting a DUT to the measurement terminals of the auto-balancing bridge instrument requires a
test fixture or test cables. The selection of the appropriate test fixtures and cables, as well as the
techniques for obtaining the optimum DUT connection configuration, are important for maximizing
the total measurement accuracy. This section introduces the basic theory and use of each connec-
tion configuration, focusing on the auto-balancing bridge instrument. In RF impedance measure-
ments, the usable connection configuration is the two-terminal (2T) configuration only. Since the
measurement technique for RF impedance is different from that for LF, it is described separately
after the discussion of the auto-balancing bridge instrument.

3.1 Terminal configuration

An auto-balancing bridge instrument is generally equipped with four BNC connectors, Hcur, Hpot,
Lpot, and Lcur, as measurement terminals (see Figure 3-1.) These terminals are conventionally
named "UNKNOWN" terminals. There are several connection configurations used to interconnect a
DUT with the UNKNOWN terminals. Because each method has advantages and disadvantages, the
most suitable method should be selected based on the DUT’s impedance and required measurement
accuracy.

Figure 3-1. Measurement terminals of auto balancing bridge instrument

L cur  : Low current

L pot  : Low potential

H po t : High potential

H cur  : High current

Precision LCR Meter
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3.1.1 Two-terminal configuration

The two-terminal (2T) configuration is the simplest method of connecting a DUT but contains many
error sources. Lead inductances (LL), lead resistances (RL), and stray capacitance (Co) between two
leads are added to the measurement result (see Figure 3-2.) Contact resistances (R) between the test
fixture’s electrodes and the DUT are also added to measured impedance. Because of the existence of
these error sources, the typical impedance measurement range (without doing compensation) is lim-
ited to 100 Ω to 10 kΩ.

Figure 3-2. Two-terminal (2T) configuration

3.1.2  Three-terminal configuration

The three-terminal (3T) configuration employs coaxial cables to reduce the effects of stray capaci-
tance. The outer shielding conductors of the coaxial cables are connected to the guard terminal.
Measurement accuracy is improved on the higher impedance measurement range but not on the
lower impedance measurement range, because lead impedances (wLL and RL) and contact resis-
tances (Rc) still remain (see Figure 3-3.) The typical impedance range will be extended above 10 kΩ.
If the two outer conductors are connected to each other at the ends of the cables as shown in Figure
3-4, the accuracy for the lower impedance measurement is improved a little. This configuration is
called the shielded 2T configuration.
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Figure 3-3. Three-terminal (3T) configuration

Figure 3-4. Shielded two-terminal (2T) configuration
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3.1.3  Four-terminal configuration

The four-terminal (4T) configuration can reduce the effects of lead impedances (wLL and RL) and
contact resistances (Rc) because the signal current path and the voltage sensing leads are indepen-
dent, as shown in Figures 3-5 (a) and (b). The voltage sensing leads do not detect the voltage drop
caused by the RL, LL, and Rc on the current leads. The impedances on the voltage sensing leads do
not affect measurement because signal current scarcely flows through these leads. Measurement
errors due to the lead impedances and contact resistances are thereby eliminated. Accuracy for the
lower impedance measurement range is thus improved typically down to 10 mΩ. Measurement accu-
racy on the higher impedance range is not improved because the stray capacitances between the
leads still remain. The 4T configuration is also called Kelvin connection configuration.

When the DUT’s impedance is below 10 mΩ, large signal current flows through the current leads,
generating external magnetic fields around the leads. The magnetic fields induce error voltages in
the adjacent voltage sensing leads. The effect of mutual coupling (M) between the current and volt-
age leads is illustrated in Figure 3-5 (e). The induced error voltages in the voltage sensing leads
cause a measurement error in very low impedance measurements. 

Figure 3-5. Four-terminal (4T) configuration
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3.1.4 Five-terminal configuration

The five-terminal (5T) configuration is a combination of the three-terminal (3T) and four-terminal
(4T) configurations. It is equipped with four coaxial cables and all of the outer shielding conductors
of the four cables are connected to the guard terminal (see Figures 3-6 (a) and (b).) This configura-
tion has a wide measurement range from 10 mΩ to 10 MΩ, but the mutual coupling problem still
remains. If the outer conductors are connected to each other at the ends of the cables, as shown in
Figure 3-7, the accuracy for the lower impedance measurement is improved a little. This configuration
is called the shielded 4T configuration.

Figure 3-6. Five-terminal (5T) configuration

Figure 3-7. Shielded four-terminal (4T) configuration
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3.1.5 Four-terminal pair configuration

The four-terminal pair (4TP) configuration solves the mutual coupling between the leads by employ-
ing the following technique. The 4TP measurement circuit is similar to the shielded 4T configura-
tion, but the outer conductors of instrument’s Hc, Hp, Lp, and Lc terminals are isolated. By connect-
ing the outer shielding conductors to each other at the ends of the coaxial cables, the current loop is
formed as shown in Figure 3-8 (a). The test signal current flows through the inner conductor of the
Hc cable, to the DUT, and the inner conductor of Lc cable, and then returns to signal source through
the outer shielding conductors of the Lc and Hc cables. Since the same current flows in opposite
directions through the inner and outer conductors of the coaxial cables, the magnetic flux generated
by the inner conductor is canceled by that of the outer shielding conductor, as shown in Figure 3-8 (e).
As a result, the mutual coupling problem is eliminated. The 4TP configuration can improve the
impedance measurement range to below 1 mΩ. The measurement range achieved by this configura-
tion depends on how well the 4TP configuration is strictly adhered to up to the connection point of
the DUT. 

Note: If the shielding conductors of coaxial test cables are not interconnected properly at the ends 
of the cables, accurate loop current does not flow through the cables and, as a result, 
the measurement range will be limited, or in some cases, measurements cannot be made.    

Figure 3-8. Four-terminal pair (4TP) configuration
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3.2 Test fixtures

The test fixture plays an important role in impedance measurement both mechanically and electri-
cally. The quality of the fixture determines the limit of the total measurement accuracy. This section
discusses how to choose or fabricate a test fixture for use with auto-balancing bridge instruments.

3.2.1 Agilent-supplied test fixtures

Agilent Technologies supplies various types of test fixtures depending on the type of device being
tested. To choose the most suitable test fixture for the DUT, consider not only the physical layout of
the contacts but also the usable frequency range, residual parameters (usable impedance range),
and the allowable DC voltage that can be applied. The contact terminals of the test fixtures (DUT
connection) can be either 2T or 4T which are respectively suited to different applications. The 
DUT connection configuration and suitable application of Agilent’s test fixtures are summarized in
Table 3-1. The advantages and disadvantages of 2T and 4T test fixtures are detailed in Appendix A.

Note: The meaning of “DUT connection configuration” in this paragraph differs from that of the ter-
minal configuration in Section 3.1. While the terminal configuration mainly refers to the
cabling methods, the DUT connection configuration describes the particular configuration of
test fixture’s contact terminals. The test fixtures are classified into the groups of 2T and 4T
fixtures by the DUT connection configuration as shown in Table 3-1.

Table 3-1. DUT connection configurations of Agilent test fixtures and their characteristics
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DUT connection Applicable 
configuration device type Agilent test fixture Basic characteristics Suitable application
2-terminal Leaded device 16047D • Measurement is Impedance: Middle and high

16047E susceptible to the effect

16065A of residual impedance Frequency: High

42842A/B/C and contact resistance

SMD 16034E • Usable frequency limit

(Surface mounted device) 16034G is high

16034H • Additional error at

16334A high frequencies is

Material 16451B smaller than in

16452A 4-terminal connection

In-circuit device 42941A

4-terminal Leaded device 16047A • Measurement is less Impedance: Low and middle

16089A/B/C/D/E affected by residual

SMD 16044A impedance and contact Frequency: Low

(Surface mounted device) resistance (at relatively

low frequencies)

• Usable frequency limit

is low

• Additional error at

high frequencies is

greater than in

2-terminal connection



3.2.2 User-fabricated test fixtures

If the DUT is not applicable to Agilent-supplied test fixtures, create an application-specific test 
fixture. Key points to consider when fabricating a test fixture are:

(1) Residuals must be minimized. To minimize the residuals, the 4TP configuration should be main-
tained as close as possible to the DUT. Also, proper guarding techniques will eliminate the
effects of stray capacitance. For details, refer to “Practical guarding techniques” in Section 3.4.

(2) Contact resistance must be minimized. Contact resistance will cause additional error. In the case of

the 2T configuration, it directly affects the measurement result. The contact electrodes should

hold the DUT firmly and should always be clean. Use a corrosion-free material for the elec-

trodes.
(3) Contacts must be able to be opened and shorted. Open/short compensation can easily reduce the

effects of the test fixture's residuals. To perform an open measurement, the contact electrodes
should be located the same distance apart as when the DUT is connected. For the short mea-
surement, a lossless (low impedance) conductor should be connected between the electrodes, or
the contact electrodes should be directly interconnected. If the 4T configuration is kept to the
electrodes, make the connections of current and potential terminals, and then make an open or
short as shown in Figure 3-9.

Figure 3-9. User-fabricated test fixture open/short methods
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3.2.3 User test fixture example

Figure 3-10 shows an example of a user-fabricated test fixture. It is equipped with alligator clips as
the contact electrodes for flexibility in making a connection to DUTs. Also, this test fixture can be
connected directly to 4TP instruments. 

Figure 3-10. Example of fixture fabrication
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3.3 Test cables

When the DUT is tested apart from the instrument, it is necessary to extend the test ports
(UNKNOWN terminals) using cables. If the cables are extended without regard to their length, it will
cause not only a measurement error, but will also result in bridge unbalance making measurement
impossible. This section provides a guideline for choosing or fabricating test cables.

3.3.1 Agilent-supplied test cables

Agilent Technologies supplies 1, 2, and 4 m cables as listed in Table 3-2. The Agilent 16048A and
16048E test leads are manufactured using the same cable material. The Agilent 16048G and 16048H
test leads employ a high-quality cable to insure low-loss transmission characteristics that specifically
match the 4294A. The cable length and the usable frequency range must be considered when select-
ing a test cable. Agilent's instruments can minimize additional measurement errors because the
characteristic of Agilent's test cables are known. Though the cable compensation function is effec-
tive for Agilent-supplied test cables, the measurement inaccuracy will increase according to the
cable length and the measurement frequency.

Table 3-2. Agilent-supplied test cables

* Note: The 4284A is obsolete product.
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Test cable Cable Maximum Connector Applicable instruments
length frequency type

16048A 1 m 30 MHz BNC 4263B, 4268A, 4284A*, 4285A,  

16048-65000 SMC 4288A, E4980A, E4981A

16048D 2 m 30 MHz BNC 4263B, 4268A, 4284A*, 4285A, 
4288A, E4980A, E4981A

16048E 4 m 2 MHz 4263B, 4284A, E4980A

16048G 1 m 110 MHz 4294A

16048H 2 m 110 MHz 4294A



3.3.2 User-fabricated test cables

Using cables other than those supplied by Agilent is not recommended. The cable compensation
function of the instrument may not work properly in non-Agilent cables. If there is an unavoidable
need to use non-Agilent cables, then employ the cable equivalent to Agilent test cables. The Agilent
part number of the cable used for frequencies below 30 MHz is 8121-1218 (not applicable to the
4294A.) Electrical specifications for these cables are provided in Figure 3-11. Do not use test cables
other than Agilent-supplied cables for higher frequencies. 

To extend the cables using the 4TP configuration, the cable length should be adapted to the instru-
ment’s cable length correction function (1 m, 2 m, or other selectable cable length.) An error in the
cable length will cause additional measurement error. A detailed discussion on the cable extension
is provided in Section 3.3.3 and in Section 4.

Figure 3-11. Specifications of recommended cable (Agilent part number 8121-1218)

3.3.3 Test cable extension

If the required test cable is longer than 1, 2, or 4 m, it is possible to extend the Agilent-supplied test
cable by using the following techniques.

4TP-4TP extension

As shown in Figure 3-12 (a), all the outer shielding conductors are interconnected at far ends of the
extension cables. Actual connection can be made using four BNC (f) to BNC (f) adapters (Agilent
part number 1250-0080 x 4) as illustrated in Figure 3-12 (b). It is recommended that the BNC
adapters be held in place with an insulation plate to keep the adapters isolated (so as to not break
the 4TP configuration.)

Note: If a conductive plate is used to hold the BNC adapters (without inserting insulators between 
the BNC adapters and the plate), the 4TP configuration is terminated at the plate and the 
return current does not flow through the extension cables. 
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Although this technique can provide the best accuracy, especially for low impedance measurement,
the extension length is limited by the measurement frequency. This is because the total length of the
series cables must be sufficiently shorter than the wavelength of the measurement signal. The fol-
lowing equation gives a guideline for determining typical cable length limitation:

F (MHz) x L (m)  ≤ 15 F: Measurement frequency (MHz)
L: Cable length (m)

When the cable length is one meter, the maximum frequency limit will be approximately 15 MHz. If
the cable length or frequency exceeds this limit, the auto-balancing bridge may not balance. For
higher frequency measurements or longer extension, the shielded 2T extension technique, which is
described next, should be used. 

Note: The 4294A helps prevent the cable length limitation by terminating the test ports with the 
same impedance as the characteristic impedance of specified test cables at high frequencies. 
However, the practical cable length limit due to increase in measurement error still exists.

Note: Additional measurement error and the compensation regarding the 4TP-4TP extension are 
described in Section 4.5.

Figure 3-12. 4TP-4TP extension
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Shielded 2T extension

As shown in Figure 3-13, the 4TP configuration is terminated and the extension cables configure a
modified 3T (shielded 2T). The two outer shielding conductors are connected together at each end of
the cable. This decreases the magnetic field induced by the inner conductors. This technique is used
in the higher frequency region, up to 15 MHz. The residual impedance of the cables will be directly
added to the measurement result, but can be an insignificant error source if the DUT’s impedance 
is greater than the impedance due to the residuals. For the actual connection, a connector 
plate (Agilent part number 16032-60001) supplied with Agilent test cables can be used as shown in
Figure 3-13.

Figure 3-13. Shielded 2T extension

(a) Schematic diagram 
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Shielded 4T extension

The outer shielding conductors of coaxial cables are interconnected at each end of the cables, as
shown in Figure 3-14. The shielded 4T extension can be used for accurate low-impedance measure-
ments. However, when applied to high-frequency measurements (typically above 3 MHz), this 
extension method produces greater measurement errors than the shielded 2T extension because the
error sources at high frequencies are complicated. The length of the shielded 4T extension in the
high frequency region should be made as short as possible.

Figure 3-14. Shielded 4T extension

Table 3-3 summarizes the extension techniques and their applicable impedance/frequency range.

Table 3-3. Summary of cable extension
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Typical measurement frequency
Measured impedance 100 kHz and below Above 100 kHz 

Low

(Typically 100 Ω and below) 4TP - 4TP

Medium

(Typically 100 Ω to 100 kΩ) 4TP - 4TP 4TP - Shielded 4T

High

(Typically 100 kΩ and above) 4TP - Shielded 2T



3.4 Practical guarding techniques

3.4.1 Measurement error due to stray capacitances

When the DUT is located near a conductor (for example, a metallic desktop) and a measurement 
signal is applied to the DUT, a voltage difference will appear between the DUT and the nearby 
conductor. This creates stray capacitances and allows the measurement signal to leak towards the
conductor as shown in Figure 3-15 (a). Unshielded portions of test leads also have stray capaci-
tances to the conductor.

Signal leakage through the stray capacitance on the High side of the DUT will bypass the DUT by
flowing through the conductor and the stray capacitance on the Low side. The ammeter (I-V convert-
er) on the Lc side measures the sum of the DUT current and the additional leakage current caused
by the stray capacitances. Thus, the effect of stray capacitances results in measurement error. The
stray capacitances produce greater measurement error for higher impedance of DUT and at higher
measurement frequencies. 

Figure 3-15. Guarding technique (1)
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3.4.2 Guarding technique to remove stray capacitances

By inserting a shielding plate between the DUT and the conductor, and by connecting it to the guard
terminal of the instrument as shown in Figure 3-15 (b), the leakage current flow through the stray
capacitances can be eliminated. Since the Low side of the DUT has a potential of zero volts (virtual
ground) equal to the guard potential, the voltage difference that yields the stray capacitance on the
Low side is extinguished. Basically, the guard terminal is the outer shielding conductor of the test
cables.

Note: If the conductor yielding the stray capacitances is isolated from the ground and is free of 
noise, it may be directly connected to the guard terminal without using the additional 
shielding plate. On the contrary, if the conductor has a noise potential, this method should be 
avoided because noise current flows into the outer shielding conductor of test cables and may
disturb measurements. 

When a stray capacitance in parallel with the DUT is present between High and Low terminals, as
shown in Figure 3-16 (a), it can be removed by inserting a shielding plate between the High and Low
terminals and by connecting the plate to the guard terminal (as shown in Figure 3-16 (b).) 

Figure 3-16. Guarding technique (2)

3.5 Terminal configuration in RF region

RF impedance measuring instruments have a precision coaxial test port, which is actually a 2T 
configuration in principle. The center conductor of the coaxial test port connector is active (High
side) terminal and the outer conductor is grounded Low side terminal, as shown in Figure 3-17. To
measure the DUT, only the simplest 2T connection configuration can be used. Residual inductance,
residual resistance, stray capacitance, and stray conductance of the test fixture will add to measure-
ment results (before compensation.) Whether using the RF I-V method or network analysis, RF
impedance measurement has lower accuracy as the measured impedance differs greater from 50 Ω. 
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3-17

Instrument inaccuracy, rather than the error factors in the 2T test fixture, primarily limits the mea-
surement range. The effect of residuals increases with frequency and narrows the measurable
impedance range in very high frequencies.

Figure 3-17. Coaxial test port circuit configuration

3.6 RF test fixtures

RF test fixtures are designed so that the lead length (electrical path length) between the DUT and
the test port is made as short as possible to minimize residuals. At frequencies typically below 
100 MHz, measurement error due to test fixture residuals is small compared to instrument error and
is normally negligible after compensation is made. But, especially when measuring low or high
impedance close to the residual parameter values, variance in the residuals of the test fixture will
cause measurement repeatability problems. For example, when measuring a 1 nH inductor (a very
low inductance), a slight variance of 0.1 nH in residual inductance will produce a 10 percent 
difference in the measured value. The variance in the residual, and resultant measurement instability,
is dependent on the accurate positioning of the DUT on the test fixture terminals. For repeatable
measurements, RF test fixtures should be able to precisely position the DUT across measurement
terminals.

The test fixture residuals will have greater effects on measurements at higher frequencies (typically
above 500 MHz) and will narrow the practical measurement range. Therefore, the usable frequency
range of the test fixture is limited to the maximum frequency specified for each test fixture.

The measurement inaccuracy for the DUT is given by sum of the instrument’s inaccuracy and the
test-fixture induced errors. Because only the 2T measurement configuration is available, the com-
pensation method is crucial for optimizing measurement accuracy. The measurement error sources
and compensation techniques are discussed in Section 4.

Each test fixture has unique characteristics and different structures. Since not only the residuals
but also the surrounding conditions of the DUT (such as ground plate, terminal layout, dielectric
constant of insulator, etc.) influence the measured values of the DUTs, the same type of test fixture
should be used to achieve good measurement correlation.



3.6.1 Agilent-supplied RF test fixtures

Agilent Technologies offers various types of RF test fixtures that meet the type of the DUT and
required test frequency range. Consider measurable DUT size, electrode type, frequency, and bias
condition to select a suitable test fixture.

There are two types of RF test fixtures: coaxial and non-coaxial test fixtures, which are different
from each other in geometrical structures and electrical characteristics. As the non-coaxial test fix-
ture has open-air measurement terminals as shown in Figure 3-18 (a), it features ease of 
connecting and disconnecting DUTs. The non-coaxial type is suitable for testing a large number of
devices efficiently. Trading off the benefit of measurement efficiency, the measurement 
accuracy tends to be sacrificed at high frequencies because discontinuity (miss-match) in electrical
characteristics exists between the coaxial connector part and the measurement terminals. The 
coaxial test fixture holds DUTs using a similar configuration to the coaxial terminations, as shown in
Figure 3-18 (b). The DUT is connected across the center electrode and the outer conductor cap elec-
trode of the test fixture. With 50 Ω characteristic impedance continuously maintained from test port
to the DUT, the coaxial test fixture provides the best measurement accuracy and the best frequency
response. As the diameter of its replaceable insulator can be selected to minimize the gap between
the DUT and the insulator, the DUT can be positioned with a good repeatability across the test fix-
ture’s terminals independently of operator skill. The coaxial test fixture ensures less additional
errors and much better measurement repeatability than the non-coaxial test fixtures.

Figure 3-18. Types of RF impedance test fixtures
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3.7 Test port extension in RF region

In RF measurements, connect the DUT closely to the test port to minimize additional measurement
errors. When there is an unavoidable need for extending the test port, such as in-circuit testing of
devices and on-wafer device measurement using a prober, make the length of test port extension as
short as possible. If the instrument has a detachable test head, it is better for accuracy to place the
test head near the DUT in order to minimize the test port extension length, and interconnect the test
head and the instrument using coaxial cables. (Observe the limit of maximum interconnection cable
length specified for the instrument.) Using a long test port extension will involve large residual
impedance and admittance of the extension cable in the measurement results, and significantly
deteriorate the accuracy even if calibration and compensation are completed.

Figure 3-19 shows an equivalent circuit model of the port extension. The inductance (Lo), resistance
(Ro), capacitance (Co), and conductance (Go) represent the equivalent circuit parameter values of
the extension cable. When the DUT’s impedance (Zx) is nearly 50 Ω, the test signal is mostly fed to
the DUT as the cable causes only a phase shift and (relatively small) propagation loss like a trans-
mission line terminated with its characteristic impedance. However, most likely the DUTs have a
different value from 50 Ω. If the impedance of the DUT is greater than that of Co, the test signal cur-
rent mainly bypasses through Co, flowing only a little through the DUT. Conversely, if the imped-
ance of the DUT is lower than that of Lo and Ro, the test signal voltage decreases by a voltage drop
across the cable and is applied only a little to the DUT. As a result, the cable residuals lead to mea-
surement inaccuracy and instability, particularly, in high-impedance and low-impedance measure-
ments. As illustrated in Figure 3-19, the Lo, Ro, Co, and Go not only get involved in the measure-
ment results (before compensation), but also affect measurement sensitivity. Note that the measur-
able impedance range becomes narrow due to port extension even though the calibration and com-
pensation have been performed appropriately.

Figure 3-19. Calibration plane extension
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In addition, electrical length of the extension cable will vary with environmental temperature, 
causing phase measurement instability. Using longer extension makes measurement results more
susceptible to the influence of environmental temperature changes. Bending the cable will also
cause variance in measured phase angle, deteriorating measurement repeatability. Accordingly, in
any application the port extension should be minimized. 

The RF I-V and network analysis instruments commonly employ an N-type or 7-mm type coaxial
connector as the UNKNOWN terminal. Naturally, test port extension is made using a low-loss, elec-
trically-stable coaxial transmission line (cable) with 50 Ω characteristic impedance. When choosing
the cable, consideration should be given to temperature coefficients of propagation constants and
rigidity to restrain the cable from easily bending. Figure 3-20 shows an example of the test fixture
connected at the end of a 7 mm-7 mm connector cable. Calibration should be performed first at the
end of the extension before connecting to the test fixture. Next, the electrical length and open/short
compensations for the test fixture can be performed. (Alternatively, instead of the compensation,
the open/short/load calibration may be performed with working-standards connected at the test 
fixture's measurement terminals. This method does not require the calibration at the end of the
extension.) A detailed discussion on measurement error sources, calibration, and compensation is
provided in Section 4.

Figure 3-20. Practical calibration and compensation at extended test port
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4.0 Measurement Error and Compensation

4.1 Measurement error

For real-world measurements, we have to assume that the measurement result always contains
some error. Some typical error sources are:

• Instrument inaccuracies (including DC bias inaccuracy, test signal level inaccuracy, and
impedance measurement inaccuracy)

• Residuals in the test fixture and cables

• Noise

The DUT’s parasitics are not included in the above list because they are a part of the DUT. The para-
sitics are the cause of component dependency factors (described in Section 1.5) and dominate the
real characteristics of components. The objective of component measurement is to accurately deter-
mine the real value of a component including parasitics. In order to know the real values of the
DUTs, we need to minimize the measurement errors by using proper measurement techniques. In
the listed error sources, the residuals in the test fixture and test cables can be compensated for if
they are constant and stable.

4.2 Calibration

Calibration verifies instrument accuracy by comparing the instrument with "standard devices." To
calibrate an instrument, standard devices are connected at the calibration plane and the instrument
is adjusted (through computation/data storage) so that it measures within its specified accuracy.
The calibration plane indicates the electrical reference plane at which the standard devices are con-
nected and measured. Accordingly, calibration defines the calibration plane at which the specified
measurement accuracy can be obtained.

The calibration plane of auto-balancing bridge instruments is at the UNKNOWN BNC connectors
(see Figure 4-1.) When the cable length correction is performed, the calibration reference plane
moves to the tip of the test cables. After an auto-balancing bridge instrument is shipped from the
factory, calibration is usually required for maintenance and service purposes. To maintain the
instrument within the specified accuracy, calibration should be performed periodically at the rec-
ommended calibration intervals (typically once a year.) 

Figure 4-1. Calibration plane of auto-balancing bridge instruments
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RF-IV instruments require calibration every time the instrument is powered on or every time the
frequency setting is changed. This is because ambient temperature, humidity, frequency setting, etc.
have a much greater influence on measurement accuracy than in low frequency impedance mea-
surements. Calibration is performed using open, short, and load reference terminations (a low loss
capacitor termination is also used as necessary) as described in Section 4.7.1. The calibration plane
is at the test port or the tip of test port extension where the calibration reference terminations are
connected (see Figure 4-2.) 

Note: The calibration of the RF I-V instruments that should be performed prior to measurements 
eliminates impedance measurement errors under the desired measurement conditions. The 
RF I-V instruments also require periodic calibration at the recommended intervals for 
maintaining their overall operating performance within specifications.

Figure 4-2. Calibration plane of RF-IV instruments
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4.3 Compensation

Compensation is also called correction and reduces the effects of the error sources existing between
the DUT and the instrument’s calibration plane. Compensation, however, can not always completely
remove the error. Thus, the measurement accuracy obtained after compensation is not as good as
that obtained at the calibration plane. Compensation is not the same as calibration and can not
replace calibration. Compensation data is obtained by measuring the test fixture residuals. The
accuracy of compensation data depends on the calibration accuracy of the instrument, so compensa-
tion must be performed after calibration has been completed.

Compensation improves the effective measurement accuracy when a test fixture, test leads, or an
additional measurement accessory (such as a component scanner) is used with the instrument. The
following paragraphs describe three commonly used compensation techniques: 

• Offset compensation

• Open/short compensation

• Open/short/load compensation

Note: The open/short/load compensation for the auto-balancing bridge instrument (described in 
Section 4.3.3) is not applied to RF-IV instruments because the compensation theory for the 
RF-IV method is different from that for the auto-balancing bridge method. 

4.3.1 Offset compensation

When a measurement is affected by only a single component of the residuals, the effective value can
be corrected by simply subtracting the error value from the measured value. For example, in the
case of the low value capacitance measurement shown in Figure 4-3, the stray capacitance (Co), 
paralleled with the DUT’s capacitance (Cx) is significant to the measurement and can be removed by
subtracting the stray capacitance value from the measured capacitance value (Cxm). The stray
capacitance value is obtained with the measurement terminals left open (Com).

Figure 4-3. Offset compensation
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4.3.2 Open and short compensations

Open and short compensations are the most popular compensation technique used in recent LCR
measurement instruments. This method assumes that the residuals of the test fixture can be repre-
sented by the simple L/R/C/G circuit as shown in Figure 4-4 (a). When the DUT contact terminals of
the test fixture are open, as shown in Figure 4-4 (b), stray admittance Go + jωCo is measured as Yo
because residual impedance (Zs) is negligible, (1/Yo >> Zs). When the DUT contact terminals of the
test fixture are shorted, as shown in Figure 4-4 (c), the measured impedance represents residual
impedance Zs = Rs + jωLs because Yo is bypassed. As a result, each residual parameter is known
and, the DUT’s impedance (Zdut) can be calculated from the equation given in Figure 4-4 (d).

Note: Agilent’s impedance measurement instruments actually use a slightly different equation.
Refer to Appendix B for more detailed information.

This compensation method can minimize the errors when the actual residual circuit matches the
assumed model in the specific situations listed below:

• Measurement by connecting an Agilent test fixture to the UNKNOWN terminals

• Measurement with an Agilent test fixture connected by an Agilent test cable that is compensat-
ed for electrical length

In other situations, the open/short compensation will not thoroughly correct the measured values.
In addition, this method cannot correlate measurement results from different instruments. To
resolve these compensation limitations, the open/short/load compensation is required. Refer to
“Open/short/load compensation” described in Section 4.3.3.

.

Figure 4-4. Open/short compensation
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Precautions for open and short measurements

Open measurement must be performed so that it accurately measures the stray capacitance. To do
this, keep the distance between the test fixture terminals the same as when they are holding the
DUT. In addition, set the integration time, averaging, and test signal level so that the instrument
measures with maximum accuracy. If an open measurement is performed under improper condi-
tions, stray admittance (Yo) is not correctly measured, resulting in an open compensation error.

Short measurement is performed by connecting the test fixture terminals directly together or by
connecting a shorting device to the terminals. The residual impedance of the shorting device should
be much lower than the DUT’s impedance, otherwise it will directly affect the measurement results.
Figure 4-5 shows an example of a shorting device that is applicable to the Agilent 16047A, and
16047D test fixtures. This shorting bar (Agilent part number 5000-4226) typically has residuals of 20
nH and 1 mΩ. Hence, the shorting bar is not suitable for low impedance measurement. For very low
impedance measurement, you should use a test fixture in which the fixture terminals can be con-
nected directly together. 

t o g e t h e r .

Figure 4-5. Example of shorting device (Agilent part number 5000-4226)
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Material: Brass (Ni-dipped)

Thickness: 1.0 mm

Residual impedance: 20 nH, 1 mΩ



4.3.3 Open/short/load compensation

There are numerous measurement conditions where complicated residual parameters cannot be
modeled as the simple equivalent circuit in Figure 4-4. Open/short/load compensation is an
advanced compensation technique that can be applied to complicated residual circuits. To carry out
the open/short/load compensation, three measurements are required before measuring the DUT,
with the test fixture terminals opened, shorted, and with a reference DUT (load) connected. These
measurement results (data) are used for compensation calculation when the DUT is undergoing
measurement. As shown in Figure 4-6, the open/short/load compensation models the test fixture
residuals as a four-terminal network circuit represented by the ABCD parameters. Each parameter
value is derived by calculation if three conditions are known and if the four-terminal circuit is a 
linear circuit. The details of the calculation method for the open/short/load compensation are
described in Appendix C.

The open/short/load compensation should be used in the following situations:

(1) An additional passive circuit or component (e.g. external DC bias circuit, balun transformer,
attenuator and filter) is connected.

(2) A component scanner, multiplexer, or matrix switch is used.
(3) Non-standard length test cables are used or 4TP extension cables are connected in series with

Agilent test cables.
(4) An amplifier is used to enhance the test signal.
(5) A component handler is used.
(6) A custom-made test fixture is used.

In the cases listed above, open/short compensation will not work effectively and the measurement
result contains some error. It is not necessary to use the open/short/load compensation for simple
measurement, like measuring an axial leaded component using the Agilent 16047A test fixture. The
open/short compensation is adequate for such measurements.

Figure 4-6. Open/short/load compensation
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4.3.4 What should be used as the load?

The key point in open/short/load compensation is to select a load whose impedance value is accu-
rately known. The criteria is as follows.

Use a stable resistor or capacitor as the load device.

The load device’s impedance value must be stable under conditions of varying temperature, magnetic
flux, and other component dependency factors. So, avoid using inductors that are relatively sensi-
tive to measurement conditions for the load.

Use a load of the same size and measure it in the same way as the DUT will be measured. 

As shown in Figure 4-7, if the load is measured under different electrode conditions, its measured
data will not effectively compensate for the residuals. It is a good idea to use one of the actual DUTs
as a working standard. If the load is a different type from the DUT (e.g. load is C and the DUT is R),
at least keep the same distance between the electrodes.

Use a load that is close in value to the DUT. 

Whatever the load value is, the load compensation is effective over the entire measurement range if
the measurement circuit has a linear characteristic. In practice, the circuit between the UNKNOWN
terminals and the DUT may have a non-linear factor, especially when an additional circuit includes
a non-linear component such as an inductor, active switch, amplifier, etc. As shown in Figure 4-8,
additional measurement error will be added when the measured DUT value is far from the load
value used for the compensation. So, the impedance value of the load should be as close as possible
to that of the DUT to be measured. If various impedances are to be measured, select a load that is
nearly the center value of the DUT’s impedance range. In addition, the load value should not be near
the open or short impedance. Otherwise, the load compensation will not be effective and the result
of the open/short/load compensation will be much the same as (or even worse than) that of the
open/short compensation.

Use an accurately known load value. 

The impedance value of the load must be known before performing the open/short/load compensa-
tion. To measure the load value, it is practical to use the same measurement instrument, but under
the best possible measurement conditions. Set the measurement time, averaging, and test signal
level so that the instrument can measure the load with maximum accuracy. Also, use a test fixture
that mounts directly to the instrument. Figure 4-9 shows an example of such a measurement.
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Figure 4-7. Electrode distance in load measurement

Figure 4-8. Load value must be close to the DUT’s value

4-8



Figure 4-9. Actual open/short load measurement example

4.3.5 Application limit for open, short, and load compensations

When the residuals are too significant compared to the DUT’s impedance value, compensation may
not work properly. For example, if the measured short impedance (Zsm) is about the same as the
DUT’s impedance, total measurement error will be doubled. The following are typical criteria for
this limitation:

(1) Measured open impedance (Zom) must be more than 100 times the measured impedance of the DUT.
(2) Measured short impedance (Zsm) should be less than 1/100 of the measured impedance of the

DUT.

4.4 Measurement error caused by contact resistance

Any contact resistance existing between the DUT electrodes and the contact electrodes of the test
fixture or test station will result in measurement error. The effects of the contact resistance are dif-
ferent for the DUT connection methods, 2T and 4T. In the case of a 2T connection, the contact 
resistance is added to the DUT impedance in series and produces a positive error in the dissipation
factor (D) reading (see Figure 4-10 (a).) In the case of a 4T connection, contact resistances Rhc, Rhp,
Rlc, and Rlp exist as shown in Figure 4-10 (b.) The effects of the contact resistance differ depending
on the terminals. Rhc decreases the test signal level applied to the DUT, but it does not directly pro-
duce measurement error. Rlp may cause the auto-balancing bridge to be unstable, but generally its
effect is negligible. Rhp and Chp (distributed capacitance of the coaxial test cable) form a low-pass
filter, which causes attenuation and phase shift of the Hp input signal, producing measurement
error. Rlc and Clc also form a low-pass filter and cause an error in measured DUT current 
and phase angle. Since the resultant dissipation factor error is proportional to –ωRhp × Chp and
–ωRlc × Clc, the D error is a negative value and increases with frequency. This error becomes signifi-
cant when the 4T connection method is used in high frequency measurements. The 4T connection
gives a constant D error (that is determined by the contact resistance and test lead capacitance
only) while the error of the 2T connection varies depending on the DUT’s value (Figure 4-10 (c).)
The 4T connection provides minimal error only when the effects of contact resistance and test lead
capacitance are negligible (mainly at low frequencies.)
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Figure 4-10. Effect of contact resistance
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4.5 Measurement error induced by cable extension

4.5.1 Error induced by four-terminal pair (4TP) cable extension

A simplified schematic of test cable extension for the auto-balancing bridge instrument is shown in
Figure 4-11. Extending a 4TP measurement cable from the instrument will cause a magnitude error
and phase shift of the measurement signal according to the extension cable length and measurement
frequency.

The following two problems will arise from the cable extension:

(1) Bridge unbalanced

(2) Error in the impedance measurement result

Bridge unbalance is caused by the phase shift in the feedback loop that includes the range resistor,
(Rr), amplifier, and the Lp and Lc cables. If the Lp or Lc cable is too long, it causes a significant
change in phase angle of range resistor current (IRr) flowing through the feedback loop. The vector
current (IRr) cannot balance with the DUT current vector because of the phase error and, as a result
the unbalance current that flows into the Lp terminal is detected by the unbalance detector 
(which annunciates the unbalance state to digital control section.) Some instruments such as the
Agilent 4294A impedance analyzer can compensate for the effect of a long extension cable by 
producing an intentional phase shift in the feedback loop. 

The bridge unbalance is also caused by a standing wave (an effect of reflection) generated when the
cable length is not sufficiently shorter than the test signal wavelength. A guideline for the 
cable length limitation caused by this effect is given by the following equation (as described in
Section 3.3.3.)

F [MHz] x L [m] ≤ 15

The errors in impedance measurement results are mainly caused by the phase shift, attenuation,
and reflection of test signal on the cables connected to the Hp and Lc terminals. These errors can be
corrected by the instrument if the propagation constants and the length of the cable are known. 

These two problems are critical only at high frequencies (typically above 100 kHz), and Agilent’s
impedance measurement instruments can compensate for Agilent-supplied test cables. In the lower
frequency region, the capacitance of the cable will only degrade the measurement accuracy without
affecting the bridge balance. This effect of the cable extension is shown in Figure 4-12. 
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Figure 4-11. Cable length correction

Figure 4-12. Measurement error due to extended cable length

The cable length correction works for test cables whose length and propagation constants are
known, such as the Agilent-supplied test cables of 1, 2, or 4 m. If different types of cable in different
lengths are used, it may cause bridge unbalance in addition to measurement error.
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In practice, the measurement error is different for the cable termination types of the instrument.
High frequency 4TP instruments, such as the Agilent 4285A and the 4294A, which internally termi-
nate cables with their characteristic impedance, differ from low frequency 4TP instruments without
cable termination. 

4.5.2 Cable extension without termination

Extending test cable from the 4TP instrument without cable termination will produce an impedance
measurement error, which is typically given by the following equation:

Error = k × ∆L × f2 (%)

Where, k: A coefficient specific to the instrument
∆L: Cable length difference (m) from standard length (cable length setting)
f: Measurement frequency (MHz)

The k value is a decimal number mostly within the range of –1 to +1 and is different depending on
instruments. As the above equation shows, the error rapidly increases in proportion to the square of
measurement frequency. Using the open/short compensation will not reduce this error. Only the
open/short/load compensation can minimize this error.

4.5.3 Cable extension with termination

Extending the test cables from the instrument with cable termination will not produce a large error
for the magnitude of measured impedance (because the effect of reflections is decreased.) However,
it causes a phase error in proportion to the extension length and measurement frequency. (In prac-
tice, an error for the magnitude of impedance also occurs because the actual cable termination is
not ideal.) Performing the open/short/load compensation at the end of the cable can eliminate this
error.

4.5.4 Error induced by shielded 2T or shielded 4T cable extension

When the 4TP test cables and the shielded 2T (or shielded 4T) extension cables are connected in
series as shown in Figures 3-13 and 3-14, the cable length limitation and measurement error (dis-
cussed in Sections 4.4.2 and 4.4.3) apply to the 4TP test cables only. The cable extension portion in
the shielded 2T or shielded 4T configuration does not cause the bridge unbalance, but produces
additional impedance measurement error. There are some error sources specific to the shielded 2T
or shielded 4T configuration (as described in Sections 3.1.2 and 3.1.4) in the cable extension por-
tion. In this case, different compensation methods are applied to the 4TP test cables and the cable
extension portion, respectively.

Agilent-supplied test cables should be used in order to apply the cable length correction to the 4TP
test cables. The cable length correction moves the calibration plane to the tip of the 4TP test cables
from the UNKNOWN terminals. To minimize errors, perform the cable length correction for the
Agilent test cables and then the open/short/load compensation at the tip of extension cables. When
the cable extension is sufficiently short and is used in the low frequency region, the open/short 
compensation can be used in place of the open/short/load compensation. Note that the cable length
correction must be done to avoid the bridge unbalance caused by the phase shift of the measure-
ment signal in the 4TP test cables.
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4.6 Practical compensation examples

The error sources present in a practical measurement setup are different for the configuration of
test fixtures, test cables, or circuits which may be connected between the instrument and the DUT.
Appropriate compensation methods need to be applied depending on the measurement configura-
tion used. Figure 4-13 shows examples of the compensation methods that should be used for typical
measurement setups.

4.6.1 Agilent test fixture (direct attachment type) 

When an Agilent direct attachment type test fixture is used, open/short compensation is enough to
minimize the additional measurement errors. Since the characteristics of Agilent test fixtures can be
properly approximated by the circuit model shown in Figure 4-4, the open/short compensation
effectively removes the errors. Open/short/load compensation is not required as long as the funda-
mental measurement setup is made as shown in Figure 4-13 (a). 

4.6.2 Agilent test cables and Agilent test fixture

When Agilent test cables and an Agilent test fixture are connected in series as shown in Figure 4-13 (b),
perform the cable length correction first. The cable length correction moves the calibration plane to
the tip of the test cables. Then, perform the open/short compensation at the DUT terminals of the
test fixture in order to minimize the test fixture induced errors.

4.6.3 Agilent test cables and user-fabricated test fixture (or scanner)

When Agilent test cables and a user-fabricated test fixture are connected in series as shown in
Figure 4-13 (c), perform the cable length correction first in order to move the calibration plane to
the tip of the test cables. The characteristics of the user-fabricated test fixture are usually unknown.
Thus, the open/short/load compensation should be performed to effectively reduce the errors even
if the test fixture has complicated residuals. 

4.6.4 Non-Agilent test cable and user-fabricated test fixture

When a non-Agilent test cable and a user-fabricated test fixture is used, the 4TP measurement is 
basically limited to the low frequency region. In the higher frequency region, this type of test configu-
ration may produce complicated measurement errors or, in the worst cases, cause the bridge unbal-
ance which disables measurements. When measurement setup is made as shown in Figure 4-13 (d),
the cable length correction cannot be used because it will not match the characteristics of the 
non-Agilent cables. As a result, the calibration reference plane stays at the instrument’s UNKNOWN
terminals (as shown in Figure 4-1 (a).) Initially, verify that the bridge unbalance does not arise at
the desired test frequencies. Next, perform the open/short/load compensation at the DUT terminals
of the test fixture. This method can comprehensively reduce measurement errors due to the test
cables and fixture.

4-14



Figure 4-13. Compensation examples
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4.7 Calibration and compensation in RF region

4.7.1 Calibration

Whether the RF I-V method or network analysis, the open, short, and load calibration minimizes
instrument inaccuracies. To perform calibration, open, short, and load reference terminations are
connected to the test port and each of the terminations is measured. This calibration data is stored
in instrument’s memory and used in the calculation to remove the instrument errors. Impedance
values of these reference terminations are indicated in both vector impedance coordinates and a
Smith chart in Figure 4-14.

Note: A 7-mm coaxial connector has a fringe capacitance of typically 0.082 pF when terminated
with Open. This fringe capacitance value has been memorized in the instrument and is used to
calculate accurate open calibration data.

Figure 4-14. Calibration standard values

Though all three terminations are indispensable for calibration, the load termination impedance 
(50 Ω) is particularly important for precise calibration and has a large influence on resultant mea-
surement accuracy. The uncertainty of the load termination impedance is represented by a circle
that encloses the error vector (see Figure 4-14 (a).) The uncertainty of its phase angle increases with
frequency and becomes a considerable error factor, especially in measurements of high Q (low ESR
or low D) devices at high frequencies.

To improve accuracy for the high Q (low loss) measurement, the RF I-V measurement instrument
can be calibrated using a low loss capacitor (LLC) termination in addition to the open/short/load
terminations. The LLC provides a reference for calibration with respect to the 90°-phase component
of impedance. As a result, the instrument can measure high Q (low dissipation factor) devices more
accurately than when basic open/short/load calibration is performed. The LLC calibration takes
place only in the high frequency range (typically above 300 MHz) because the phase angle of the load
impedance is accurate at relatively low frequencies.
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When the test port is extended, calibration should be performed at the end of extension cable, as
discussed in Section 3. Thereby, the calibration plane is moved to the end of cable.

To perform measurements to meet specified accuracy, the instrument should be calibrated before
the measurement is initiated and each time the frequency setting is changed. The calibration defines
the calibration reference plane at which measurement accuracy is optimized.

If a component could be measured directly at the calibration plane, it would be possible to obtain
measured values within the specified accuracy of the instrument. However, the real-world compo-
nents cannot be connected directly to the calibrated test port and a suitable test fixture is used for
measurements. Calibration is not enough to measure the DUT accurately. Because measurement is
made for the DUT connected at the contact terminals of the test fixture (different from calibration
plane), the residual impedance, stray admittance, and electrical length that exist between the cali-
bration plane and the DUT will produce additional measurement errors. As a result, compensation
is required to minimize those test fixture induced errors.

4.7.2 Error source model

Regarding ordinary, non-coaxial test fixtures, consider an error source model similar to that in low
frequency measurements. Figure 4-15 (a) illustrates a typical test fixture configuration and a model
of error sources. The test fixture is configured with two electrically different sections: a coaxial con-
nector section and a non-coaxial terminal section for connecting the DUT. The characteristic of the
coaxial section can be modeled using an equivalent transmission line (distributed constant circuit)
and represented by propagation constants. Normally, as the coaxial section is short enough to
neglect the propagation loss, we can assume that only the phase shift (error) expressed as electrical
length exists. The characteristic of the non-coaxial section can be described using the residual
impedance and stray admittance model in a two-terminal measurement configuration as shown in
Figure 4-15 (b). We can assume residual impedance (Zs) is in series with the DUT and stray admit-
tance (Yo) is in parallel with DUT.

Figure 4-15. Typical error source model
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4.7.3 Compensation method

As the error source model is different for the coaxial and non-coaxial sections of the test fixture, the
compensation method is also different.

Electrical length compensation eliminates measurement errors induced by the phase shift in the
coaxial section. Agilent RF impedance analyzers and RF LCR meters facilitate the electrical length
compensation by allowing you to choose the model number of the desired test fixture from among
the displayed list, instead of entering the specified electrical length of that test fixture to the instru-
ment. (It is also possible to input the specified electrical length value.)

Open/short compensation is effective for residuals in the non-coaxial section. It is based on the
same compensation theory as described for low frequency measurements. (Refer to Section 4.3.2 for
details.) The Yo and Zs can be determined by measuring with the contact terminals opened and
shorted, respectively.

As the test fixture is configured with the coaxial and non-coaxial sections, both compensations are
required to minimize combined errors. Load compensation is not required for normal measure-
ments using Agilent-supplied test fixtures.

When a test port extension or a user-fabricated test fixture is used, error sources will not match the
model assumed for the open/short compensation and they will affect measurement results. In such
cases that measurement errors cannot be removed sufficiently, consider attempting the
open/short/load compensation. Actually, the open/short/load compensation is substituted by the
open/short/load calibration using working-standard devices because these two functions are equiva-
lent to each other. Note that when the open/short/load calibration is executed at measurement ter-
minals, the test port calibration data is invalidated (because the calibration plane is moved.)
Consequently, measurement accuracy depends on the calibrated accuracy of the short and load
working-standard devices (open calibration requires no device) as well as the proper contact when
these standard devices are inserted into the test fixture. It is important that special consideration be
given to the precision of the standard values, contact resistance, and positioning of the standard
device on the test fixture.

4.7.4 Precautions for open and short measurements in RF region

To discuss calibration and compensation issues, we need to consider how residual parameters have
large effects on measurement results at high frequencies.

Assume that, for example, a residual inductance of 0.1 nH and a stray capacitance of 0.1 pF exist
around the measurement terminals of the test fixture. Notice how the effects of these small residuals
differ depending on frequency. Relationships of the residual parameter values to the typical imped-
ance measurement range are graphically shown in Figure 4-16. In the low frequency region, the
residual parameter values are much smaller than the values of normally measured devices. It is
because the capacitors and inductors, which are designed for use in low frequency electronic equip-
ment, possess large values compared to small residuals. In the high frequency region, however,
devices such as those employed for higher frequency circuits and equipment have lower values. In
the frequency range typically above 100 MHz, the majority of the DUTs are low value devices (in the
low nanohenries and the low picofarads) and their values come close to the values of the residuals.
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Accordingly, the residual parameters have greater effects on higher frequency measurements and
become a primary factor of measurement errors. The accuracy of measurement results after com-
pensation depends on how precisely the open/short measurements have been performed.

Figure 4-16. Relationship of residual parameter values to the typical impedance measurement range of the RF I-V

method

To perform optimum compensation, observe the precautions for open/short measurements
described in Section 4.3.2. In the high frequency region, the method of open/short compensation
dominates the measurement correlation. To obtain measurement results with a good correlation and
repeatability, the compensation must be performed with the same conditions. A difference in the
compensation method will result in a difference in measured values, leading to correlation problems
on measurement results. Short measurement is more critical in terms of increasing the need for low
inductance measurements.

4.7.5 Consideration for short compensation

To make the short measurement at the contact terminals of a test fixture or of a component handler,
a short bar (chip) is usually employed. When measuring very low impedance (inductance), the 
following problems arise from the short bar:

• Different residual impedance is dependent on size and shape
• Method of defining the residual impedance

If a different size or shape of the short bar is used, it is difficult to obtain a good correlation of the
measurement results. The residual impedance of the short bar is different if the size differs. Hence,
the same size of short bar must be used when making the short measurement.

If the definition of the short bar’s impedance is different, it causes a difference in measured values.
To have a good correlation, it is desirable to determine the short bar’s residuals. However, it cannot
be determined only from the inherent impedance of the short bar itself. The actual impedance
depends on surrounding conditions such as contact terminals, thickness of the closely located 
conductors, permittivity of insulators, ground conditions, etc.
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Conceptually, there are two methods for defining the short bar’s impedance. One is to assume the
impedance is zero. This has been a primordial method of defining the short impedance. In this defin-
ition method, the measurement result is a relative value of the DUT to the short bar. The other
method is to define the short bar’s inductance as xx H. (Residual resistance is negligible for a small
short bar.) In this method, the measurement result is deemed as the absolute value of the DUT. The
residual inductance of the short bar is estimated from physical parameters (size and shape) and is
used as a reference. To estimate the inductance, the short bar needs to meet conditions, where theo-
retical derivation is possible.

The measurement results from both definition methods are correct. The difference in the measure-
ment result is attributable to the difference in the definition. Practically, because of these incompati-
ble definitions, a problem will emerge when yielding correlation. To avoid this type of problem, it is
necessary to establish an agreement on the short bar’s size, shape, and the definition method of the
residual inductance.

Note: Each of the Agilent 16196A/B/C/D coaxial test fixtures has a short device whose value is theo-
retically definable. Since a 50 Ω coaxial configuration is established for the whole signal flow
path, including the short device placed in the fixture, the theoretical inductance value of the
short device can be calculated from the length and physical constants by using a transmission
line formula. Its reference value is documented; however, the use of the 16196A/B/C/D is not
subject to the execution of the compensation based on the reference value. You need to select
the definition method of short inductance that agrees with your measurement needs.

The chip-type short devices and load devices are readily available from the working-standard set
supplied for Agilent RF I-V measurement instruments. Otherwise, you can substitute appropriate
devices for the short and load chips by accurately determining (or properly defining) their charac-
teristics. 

4.7.6 Calibrating load device

To determine the values of a load device, you can use the same instrument that will be used to mea-
sure the DUTs. The appropriate procedure for calibrating the load device is described below:

(1) Perform open/short/load calibration at the instrument’s test port. In addition, for a capacitive
or an inductive load device, it is recommended that low loss capacitor calibration be performed.

(2) Connect a direct-mounting type test fixture to the test port. It is recommended that the
16196A/B/C/D coaxial test fixtures be used to insure the best measurement accuracy.

(3) Perform open and short compensation. For short measurement, the method of minimizing short
impedance must be employed. (To do this, contact the terminals directly together if possible.)
When the 16196A/B/C/D is used, consider inputting the reference value of the residual induc-
tance of the furnished short device to the instrument. (Using the reference value is contingent
upon how the reference of short inductance needs to be defined for your measurement. Agilent
chooses to take the historic approach to let Short = 0 H, but the actual user of the test fixture
can choose either approach.)

(4) Connect the load device to the test fixture, select the parameters available for the instrument’s
load calibration function (typically R-X, L-Q, L-Rs, and C-D) and measure the device. Set the
measurement time, test signal level, and averaging so that the instrument can measure the load
with maximum accuracy (or use the specified test signal level of the device if required.)
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4.7.7 Electrical length compensation

In the lower frequency region, using the open/short compensation function can minimize most of
test fixture residuals. In the RF region, however, this is not enough to reduce the effect of the test
fixture residuals. The wavelength of RF frequencies is short and is not negligible compared to the
physical transmission line length of the test fixture. So, a phase shift induced error will occur as a
result of the test fixture, and this error cannot be reduced by using open/short compensation. The
phase shift can be compensated if the electrical length of the transmission line is known. As shown
in Figure 4-17, both the electrical length compensation and open/short compensation should be per-
formed after calibrating at the test port.

The electrical length compensation corrects phase error only and ignores propagation loss induced
error. This is only effective when transmission line (test port extension) is short enough to neglect
the propagation loss.

Note: Theoretical explanation for the effects of the electrical length and the compensation is given
in Appendix D.

Figure 4-17. Complete calibration and compensation procedure

4-21



4.7.8 Practical compensation technique

The calibration and compensation methods suitable for measurement are different depending on
how the test cable or fixture is connected to the test port. The following is a typical guideline for
selecting appropriate calibration and compensation methods.

Measurements using an Agilent test fixture without a test port extension

To make measurements using a test fixture connected directly to the test port, first perform calibra-
tion at the test port. After calibration is completed, connect the test fixture to the test port and 
then perform electrical length compensation (for the test fixture’s electrical length) and open/short
compensation.

Measurement using a test port extension

When the measurement needs to be performed using a test port extension or a non-Agilent test fix-
ture, it is recommended that the open/short/load calibration be performed at the measurement ter-
minals of the test fixture. Typically, this method is applied when unknown devices are measured
using a component handler. Because coaxial terminations do not match geometrically with the con-
tact terminals of the test fixture or of the component handler, short and load devices whose values
are defined or accurately known are required as substitution standards. (Open calibration requires
no device.) Compensation is not required because measurements are made at the calibration plane.

4.8 Measurement correlation and repeatability

It is possible for different measurement results to be obtained for the same device when the same
instrument and test fixture is used. There are many possible causes for the measurement discrepan-
cies, as well as residuals. Typical factors for measurement discrepancies in RF impedance measure-
ments are listed below.

• Variance in residual parameter value
• A difference in contact condition
• A difference in open/short compensation conditions
• Electromagnetic coupling with a conductor near the DUT
• Variance in environmental temperature

4.8.1 Variance in residual parameter value

Effective residual impedance and stray capacitance vary depending on the position of the DUT 
connected to the measurement terminals. Connecting the DUT to the tip of the terminals increases
residual inductance compared to when the DUT is at the bottom. Stray capacitance also varies with
the position of the DUT (see Figure 4-18.)
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Figure 4-18. Difference in residual parameter values due to DUT positioning

4.8.2 A difference in contact condition

A change in the contact condition of the device also causes measurement discrepancies. When the
device is contacted straight across the measurement terminals, the distance of current flow between
the contact points is minimum, thus providing the lowest impedance measurement value. If the DUT
tilts or slants, the distance of the current flow increases, yielding an additional inductance between
the contact points (see Figure 4-19.) Residual resistance will also change depending on the contact
points and produce a difference in measured D, Q, or R values. The positioning error affects the
measurement of low value inductors and worsens the repeatability of measured values.

Figure 4-19. Measurement error caused by improper DUT positioning
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4.8.3 A difference in open/short compensation conditions

Improper open/short measurements deteriorate the accuracy of compensated measurement results.
If the open/short measurement conditions are not always the same, inconsistent measurement val-
ues will result. Each short device has its inherent impedance (inductance) value and, if not defined
as zero or an appropriate value, the difference of the short device used will produce resultant mea-
surement discrepancies. Effective impedance of the short device will vary depending on how it con-
tacts to the measurement terminals. When the bottom-electrode test fixture is used, contact points
on the measurement terminals will be different from the case of the parallel-electrode test fixture, as
shown in Figure 4-20. If the short device is not straight (slightly curved), the measured impedance
will be different depending on which side of the device comes upside. These effects are usually
small, but should be taken into considerations especially when performing a very low inductance
measurement, typically below 10 nH.

Figure 4-20. Difference in short impedance by test fixture types

4.8.4 Electromagnetic coupling with a conductor near the DUT

Electromagnetic coupling between the DUT and a metallic object near the DUT varies with mutual
distance and causes variance in measured values. Leakage flux generated around inductive DUT
induces an eddy current in a closely located metallic object. The eddy current suppresses the flux,
decreasing the measured inductance and Q factor values. The distance of the metallic object from
the DUT is a factor of the eddy current strength as shown in Figure 4-21 (a). As test fixtures contain
metallic objects, this is an important cause of measurement discrepancies. Open-flux-path inductors
usually have directivity in generated leakage flux. As a result, measured values will vary depending
on the direction of the DUT. The difference in the eddy current due to the leakage flux directivity is
illustrated in Figures 4-21 (b), (c), and (d).

If a parasitic capacitance exists between the DUT and an external conductor, it is difficult to remove
the effect on measurement because the guarding technique is invalid. Thus, the DUT should be sepa-
rated from the conductor with enough distance to minimize measurement errors.
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Figure 4-21. Eddy current effect and magnetic flux directivity of device

4.8.5 Variance in environmental temperature

Temperature influences the electrical properties of materials used for the test fixtures and cables.
When the test port is extended using a coaxial cable, the dielectric constant of the insulation layer
(between the inner and outer conductors) of the cable, as well as physical cable length, will vary
depending on the temperature. The effective electrical length of the cable varies with the dielectric
constants, thus resulting in measurement errors. Bending the cable will also cause its effective elec-
trical length to change. Keep the extension cable in the same position as it was when calibration was
performed.
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a) Metallic object near the leakage flux 
of inductor will cause an eddy current 
effect. This effect increases as the 
distance of the metallic object from 
the inductor decreases.

b) Inductor with leakage flux directivity. 
Turning the inductor by 90 degrees 
reduces the eddy current as shown in 
figure (c).

c) Metallic object in parallel with the 
leakage flux causes less eddy current.

d) Inductor with less leakage flux 
directivity. The eddy current effect is 
almost independent from the direction 
of inductor’s side faces.
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5.0 Impedance Measurement Applications and Enhancements

Impedance measurement instruments are used for a wide variety of applications. In this section we
present fundamental measurement methods and techniques used to make accurate and consistent
measurements for various devices. Special measurement techniques, including the methods of
enhancing the test signal level or DC bias level, are also covered to expand the range of impedance
measurement applications.

5.1 Capacitor measurement

Capacitors are one of the primary components used in electronic circuits. The basic structure of a
capacitor is a dielectric material sandwiched between two electrodes. The many available types of
capacitors are classed according to their dielectric types. Figure 5-1 shows the typical capacitance
value ranges by the dielectric types of capacitors. Table 5-1 lists the popular applications and 
features of the capacitors according to their dielectric classification. Capacitance (C), dissipation 
factor (D), and equivalent series resistance, ESR, are the parameters generally measured.

Figure 5-1. Capacitance value by dielectric type
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Table 5-1. Capacitor types

5.1.1 Parasitics of a capacitor

A typical equivalent circuit for a capacitor is shown in Figure 5-2. In this circuit model, C denotes
the main element of the capacitor. Rs and L are the residual resistance and inductance existing in
the lead wires and electrodes. Rp is a parasitic resistance which represents the dielectric loss of the
dielectric material.

Figure 5-2. Capacitor equivalent circuit

R sL
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C

Z  =  R s +
1 + w2 R p
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R p
+ j

1  + w2 R p
2 C 2

wL - w R p
2 C+ w3 R p

2 L  C 2

Real part  (R) Imaginary  part (X)

Type Application Advantage Disadvantage

Film • Blocking, buffering, • Wide range of capacitance • Medium cost
bypass, coupling, and and voltage values
filtering to medium • High IR, low D, good Q
frequency • Stable

• Tuning and timing • Low TC
• High voltage

Mica • Filtering, coupling, and • Low dielectric losses and good • Low capacitance-to-volume ratio
bypassing at high temperature, frequency, and
frequencies aging characteristics

• Resonant circuit, tuning • Low AC loss, high frequency
• High-voltage circuits • High IR
• Padding of larger • Low cost

capacitors • Extensive test data, reliable

Ceramic • Bypassing, coupling, and • High capacitance-to-volume ratio • Poor temperature coefficients
filtering to high • Chip style available and time stability
frequency • Low D (low k type) • Large voltage dependency and 

• Low cost susceptible to pressure 
(high k type)

Tantalum • Blocking, bypassing. • High capacitance-to-volume ratio • Voltage limitation
electrolytic coupling, and filtering • Good temperature coefficients • Leakage current

in low–frequency • Extensive test data • Poor RF characteristics
circuits, timing, color • Medium cost
convergence circuits, • Failure mode: short
squib firing,
photoflash firing

Aluminum • Blocking, bypassing. • Highest capacitance-to-volume • Affected by chlorinated
electrolytic coupling, and low ratio of electrolytics hydrocarbons

frequency filtering • Highest voltage of electrolytics • High leakage current
• Photoflash • Highest capacitance • Requires reforming after period

• Lowest cost per CV unit for of storage
commercial types • Poor RF characteristics

• High ripple capability • Poor reliability
• Short life
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Since real-world capacitors have complicated parasitics, when an impedance measuring instrument
measures a capacitor in either the series mode (Cs – D or Cs – Rs) or the parallel mode (Cp – D, 
Cp – G, or Cp – Rp), the displayed capacitance value, Cs or Cp, is not always equal to the real capac-
itance value, C, of the capacitor. For example, when the capacitor circuit shown in Figure 5-2 is
measured using the Cs – Rs mode, the displayed capacitance value, Cs, is expressed using the com-
plicated equation shown in Figure 5-3. The Cs value is equal to the C value only when the Rp value
is sufficiently high (Rp >> 1/wC) and the reactance of L is negligible (wL << 1/wC.) Generally, the
effects of L are seen in the higher frequency region where its inductive reactance, wL, is not negligi-
ble. The Rp is usually insignificant and can be disregarded in the cases of high-value capacitors
(because Rp >> 1/wC.) For low-value capacitors, the Rp itself has an extremely high value.
Therefore, most capacitors can be represented by using a series C-R-L circuit model as shown in
Figure 5-4. Figures 5-5 (a) and (b) show the typical impedance (|Z| _ q) and Cs – D characteristics
of ceramic capacitors, respectively. The existence of L can be recognized from the resonance point
seen in the higher frequency region. 

Note: The relationship between typical capacitor frequency response and equivalent circuit model 
is explained in Section 1.5.

Figure 5-3. Effects of parasitics in actual capacitance measurement

Figure 5-4. Practical capacitor equivalent circuit

Figure 5-5. Typical capacitor frequency response
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5.1.2 Measurement techniques for high/low capacitance

Depending on the capacitance value of the DUT and the measurement frequency, you need to
employ suitable measurement techniques, as well as take necessary precautions against different
measurement error sources. 

High-value capacitance measurement

The high-value capacitance measurement is categorized in the low impedance measurement.
Therefore, contact resistance and residual impedance in the test fixture and cables must be mini-
mized. Use a 4T, 5T, or 4TP configuration to interconnect the DUT with the measurement instru-
ment. When the 4T or 5T configuration is used, the effects of electromagnetic field coupling due to a
high test signal current flow through the current leads should be taken into considerations. To mini-
mize the coupling, twist the current leads together and the potential leads together, as shown in
Figure 5-6. Form a right angle (90°) between the current leads and potential leads connected to DUT
terminals. 

Figure 5-6. High-value capacitor measurement

Also, for an accurate measurement, open/short compensation should be properly performed. During
the open/short measurements (in the 4T or 5T configuration), maintain the same distance between
the test cables as when the DUT will be measured. For electrolytic capacitors, which require a DC
bias voltage to be applied, the open/short compensation should be performed with the DC bias func-
tion set to ON (0 V bias output.)

The component dependency factors discussed in Section 1 should be taken into account, especially
when measuring high-value ceramic capacitors. The high-value ceramic capacitors exhibit a large
dependence on frequency, test signal voltage (AC), DC bias, temperature, and time.

Magnetic fields generated around

the test cables are canceled by

twisting the cables.
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Low-value capacitance measurement

The low-value capacitance measurement is categorized in the high impedance measurement. Stray
capacitance between the contact electrodes of a test fixture is a significant error factor compared to
the residual impedance. To make interconnections with the DUT, use a 3T (shielded 2T), 5T (shield-
ed 4T), or 4TP configuration. Proper guarding techniques and the open/short compensation can
minimize the effects of stray capacitance (refer to Section 3.4.) Figure 5-7 shows the typical proce-
dure for performing the open/short compensation when measuring SMD (chip-type) capacitors with
the Agilent 16034E/G test fixtures.

Figure 5-7. Low-value chip capacitor measurement

Other than capacitance, important capacitor parameters are the dissipation factor, D, and the ESR.
Special precautions must be taken in the low D or low ESR measurements. Contact resistance and
residual impedance in the test fixture and cables will affect the measurement results even when the
4T configuration is used (refer to Section 4.)  

DC biased capacitance measurement

The DC biased capacitance measurement can be performed using the internal DC bias function of an
impedance measuring instrument, or an external bias fixture for applying a bias voltage from an
external DC source. When the DC bias voltage is changed, a bias settling time needs to be taken until
the capacitor is charged by the applied bias voltage. The required bias settling time increases in pro-
portion to the capacitance of the DUT. Accordingly, to perform an accurate bias sweep measurement
for a high-value capacitor, it is necessary to insert a delay time between the step-up (or the step-
down) of bias voltage and measurement trigger for each sweep measurement point. The required
bias settling time can be obtained from DC bias performance data of the instrument or bias fixture
used.
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5.1.3 Causes of negative D problem

When measuring the dissipation factor (D) of a low loss capacitor, the impedance measuring instru-
ment may sometimes display a negative D value despite the fact that the real dissipation factor must
be a positive value. A negative D measurement value arises from a measurement error for a small
resistance component of the measured impedance. In this section, we discuss the causes of negative
D and the methods for minimizing the measurement errors that lead to the negative D problem. Five
typical causes of negative D problem are:

• Instrument inaccuracy

• Contact resistance in the 4TP or 5T configuration

• Improper short compensation

• Improper cable length correction

• Complicated residuals

Note: The following discussion also applies to a negative Q problem because the Q factor is the 
reciprocal of D.

D measurement error due to instrument inaccuracy

If a DUT has a low D value compared with the D measurement accuracy (allowable D measurement
error) of the instrument, a measured dissipation factor may become a negative value. Figure 5-8
shows how the D measurement accuracy of instrument impacts a negative D value. For example,
when D measurement accuracy (of instrument A) is ±0.001 for a low-loss capacitor that has a dissi-
pation factor of 0.0008, the impedance measurement error is represented by a dotted circle on the
vector plane as shown in Figure 5-8. The shaded area of the dotted circle exists on the left side of
reactance axis (X axis.) This shaded area represents the negative D area in which the resistance
component of the measured impedance is a negative value. The allowable D value range is from
–0.0002 to 0.0018. In this case, there is possibility that a negative D value is displayed. If the D mea-
surement accuracy (of instrument B) is ±0.0005, the measured impedance vector is within the solid
circle as shown in Figure 5-8. The negative D value is not displayed because the allowable D value
range is from 0.0003 to 0.0013. Accordingly, an impedance measuring instrument with the best pos-
sible accuracy is required for avoiding negative D display in low dissipation factor measurements. 

Figure 5-8. Negative D measurement value due to measurement inaccuracy

Example:

D = 0.0008 

(at specific measurement conditions)

Instrument D accuracy Possible readout

A ± 0.001 –0.0002 to 0.0018

B ± 0.0005 0.0003  to 0.0013
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X
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Contact resistance 

As described in Section 4.4, contact resistance between the DUT’s electrodes and the contact elec-
trodes of the test fixture causes D measurement error. While the contact resistance of the 2T test fix-
ture directly adds to the measured impedance as a positive D error, the contact resistance at the Hp
and Lc electrodes of a 4T test fixture cause a negative D error (see Figure 4-10.) When a capacitor
that has a very low D is measured using a 4T test fixture, a negative D value is displayed depending
on the magnitude of the D measurement error due to a contact resistance.

Improper short compensation

When short compensation is performed based on an improper short measurement value, a negative
D value may be displayed. Major causes of an improper short measurement are a contact resistance
at the test fixture’s electrodes and a residual resistance of the shorting bar. As described in 
Section 4.3, the resistance (Rs) and reactance (Xs) values obtained by short measurement are stored
in the instrument and removed from the measured impedance of the DUT by performing the short
compensation. If the Rs value is greater than the resistance component (Rxm) of the DUT’s imped-
ance, the corrected resistance (Rxm – Rs) becomes a negative value and, as a result, a negative D
value is displayed. To avoid this problem, clean the test fixture’s electrodes to minimize the contact
resistance and use a shorting bar with the lowest possible residual resistance.

Improper cable length correction 

When cable length correction is not properly performed for the test cables used, a negative D value
may be displayed at high frequencies because a phase angle measurement error is caused by the
cables. The error increases in proportion to the square of the measurement frequency. After the
cable length correction is performed, a small phase error may remain and cause a negative D value
because the characteristics of test cables are slightly different for the respective cables. The
open/short/load compensation can minimize the measurement error due to the differences between
the cables. 

Complicated residuals 

Using a long cable, a component scanner, or a component handler has the propensity to cause a neg-
ative D display due to complicated residuals. When complex residual impedance and stray admit-
tance exist in the connection circuit between the DUT and the calibration plane of the impedance
measuring instrument, the characteristics of the connection circuit do not match the open/short
compensation circuit model (see Figure 4-4.) Since the open/short compensation cannot effectively
remove the measurement error due to the complex residuals and strays, a D measurement error
causes a negative D display. The open/short/load compensation is an effective method for eliminat-
ing measurement errors caused by complicated residuals.
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5.2 Inductor measurement

5.2.1 Paracitics of an inductor

An inductor consists of wire wound around a core and is characterized by the core material used.
Air is the simplest core material for making inductors, but for volumetric efficiency of the inductor,
magnetic materials such as iron, permalloy, and ferrites are commonly used. A typical equivalent
circuit for an inductor is shown in Figure 5-9 (a). In this figure, Rp represents the magnetic loss
(which is called iron loss) of the inductor core, and Rs represents the copper loss (resistance) of the
wire. C is the distributed capacitance between the turns of wire. For small inductors the equivalent
circuit shown in Figure 5-9 (b) can be used. This is because the value of L is small and the stray
capacitance between the lead wires (or between the electrodes) becomes a significant factor.

Figure 5-9. Inductor equivalent circuit

Generally, inductors have many parasitics resulting from the complexity of the structure (coil) and
the property of the magnetic core materials. Since a complex equivalent circuit is required for repre-
senting the characteristics, which include the effects of many parasitics, a simplified model for
approximation is used for practical applications. In this section, we discuss the frequency response
of a low-value inductor, which is represented by equivalent circuit model shown in Figure 5-9 (b).
This model will fit for many SMD (chip) type RF inductors. 

When the inductor circuit shown in Figure 5-10 is measured using the Ls-Rs mode, the measured 
Ls value is expressed by the equation shown in Figure 5-11. The measured Ls value is equal to the 
L value only when the inductor has low Rs value (Rs << wL) and low C value (1/wC >> wL). Typical
frequency characteristics of impedance (|Z|_ q) for a low-value inductor are shown in Figure 5-12 (a).
Since the reactance (wL) decreases at lower frequencies, the minimum impedance is determined by
the resistance (Rs) of winding. The stray capacitance Cp is the prime cause of the inductor frequen-
cy response at high frequencies. The existence of Cp can be recognized from the resonance point,
SRF, in the higher frequency region. At the SRF, the inductor exhibits maximum impedance because
of parallel resonance (wL = 1/wCp) due to the Cp. After the resonance frequency, the phase angle of
impedance is a negative value around –90° because the capacitive reactance of Cp is dominant. The
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inductor frequency response in Ls – Rs measurement mode is shown in Figure 5-12 (b). The mea-
sured inductance (Lm) rapidly increases as the frequency approaches the SRF because of the effect
of resonance. The maximum Lm value becomes greater as the device has a higher Q factor. At 
frequencies above the SRF, a negative inductance value is displayed because the Lm value is calcu-
lated from a capacitive reactance vector, which is opposite to inductive vector.

Figure 5-10. Inductor equivalent circuit

Figure 5-11. Effects of parasitics in actual inductor measurement

Figure 5-12. Typical inductor frequency response
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5.2.2 Causes of measurement discrepancies for inductors

Inductance measurement sometimes gives different results when a DUT is measured using different
instruments. There are some factors of measurement discrepancies as described below:

Test signal current 

Inductors with a magnetic core exhibit a test signal current dependency due to the nonlinear magne-
tization characteristics of the core material as shown in Figure 5-13 (a). The level of test signal 
current depends on the impedance measurement instrument because many of the instruments out-
put a voltage-driven test signal. Even when two different instruments are set to output the same test
signal (OSC) voltage, their output currents are different if their source resistance, Rs, is not the
same as shown in Figure 5-13 (b).

To avoid the measurement discrepancies, the OSC level should be adjusted for a defined test current
by using the auto level control (ALC) function or by determining the appropriate test voltage setting
from the equation shown in Figure 5-13 (b).

Figure 5-13. Inductor test signal current

Test fixture used

When a metal object is located closely to an inductor, leakage flux from the inductor will induce
eddy currents in the metal object. The magnitudes of the induced eddy currents are dependent on
the dimensions and physical geometry of metal object, as shown in Figure 5-14 (a), causing differ-
ences in the measured values. The eddy current effect is especially important for measuring open-
flux-path inductors. Figure 5-14 (b) shows an example of the difference in Ls – Q measurement val-
ues due to the eddy current effect. When a 40 mm x 40 mm square and 1.0 mm thick brass plate is
placed closely to a 100 µH RF inductor, the measured Ls – Q values decrease according to the
approach of the plate from # (sufficient distance) to 10 mm and 1 mm. The eddy current effect due
to the leakage flux causes discrepancies in measurement results between different types of test fix-
tures because the test fixtures are also metal objects. To obtain consistent measurement results, it is
necessary to define the test fixture used for inductor measurements. Additionally, the DUT should
be connected at the same position of the same test fixture. 
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Figure 5-14. Test fixture effects

Q measurement accuracy

Generally, the Q-factor measurement accuracy in the impedance measurement is not high enough to
measure the high Q device. Figure 5-15 shows the relationship of Q accuracy and measured Q val-
ues. Because the Q value is the reciprocal of D, (Q = 1/D), the Q accuracy is related to the specified
D measurement accuracy as shown in Figure 5-15. The Q measurement error increases with the
DUT’s Q value and, therefore, the practically measurable Q range is limited by the allowable Q mea-
surement error. (For example, if the allowable Q error is ten percent and if the instrument’s D accu-
racy is ±0.001, the maximum measurable Q value is 90.9. (See Appendix E for the Q measurement
accuracy calculation equation.) 

Figure 5-15. Q measurement accuracy
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Figure 5-16 shows the measured vector of a high Q inductor. Except for the resonant method, the
impedance measurement instrument calculates the Q value by Q = X/R. The impedance measure-
ment error is represented by a small circle enclosing the error vector (D). The R value of a high Q
(low loss) inductor is very small relative to the X value. Small changes in R results in large Q value
changes (Q = X/R). Therefore, error in the R measurement can cause significant error in the Q fac-
tor, especially in high Q devices. A negative Q problem also arises from the Q (D) measurement error
as described in Section 5.1.3.

Figure 5-16. Q measurement error

The following methods deliver improvement to Q measurement accuracy:

(1) Use the instrument with better accuracy

(2) Perform optimum compensation for residual resistance and cable length

(3) Use an equivalent circuit analysis function and calculate the Q value from the equivalent circuit
parameter values obtained for the DUT (refer to Section 5.15.)
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Furthermore, the following phenomena may occur when a cored inductor is measured using an
auto-balancing bridge type instrument.

When a high level test signal is applied to an inductor, measurement may be impossible for a certain 
frequency range. This is because the nonlinearity of the core material causes harmonic distortion of
the test signal current, which hinders measurements. If excessive distortion current flows into the
Lpot terminal of the instrument, it causes the bridge unbalance status (see Figure 5-17 (a).) To
reduce the effects of core material nonlinearity, decrease the test signal level. If the measurement
frequency is fixed, it is possible to reduce the distortion current flow into the Lpot terminal by 
connecting a low-pass filter (LPF) at the Lpot terminal as shown in Figure 5-17 (b).

When a high level DC bias current is applied to an inductor, measurement may be impossible for a certain
frequency range. This is because test signal distortion is caused by the magnetic saturation of the
inductor core under the applied bias magnetic field. To reduce the effects of core material nonlin-
earity, take the same precautions as those for measurement at a high test signal level. 

When a test cable is used to measure low-value inductors, measurement may be impossible for certain 
values of inductance at higher frequencies. This is caused by resonance resulting from the DUT’s
inductance and the capacitance of Hp and Hc cables. In this case, the capacitance of the cables
should be changed so that the resonant frequency shifts to a much higher frequency than the maxi-
mum test frequency required. Reduce the length of the Hc and Hp cables or use another type of
cable to decrease the capacitance.

Figure 5-17. Harmonic distortion caused by inductors
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5.3 Transformer measurement

A transformer is one end-product of an inductor so, the measurement techniques are the same as
those used for inductor measurement. Figure 5-18 shows a schematic with the key measurement
parameters of a transformer. This section describes how to measure these parameters, including L,
C, R, and M.

Figure 5-18. Transformer parameters

5.3.1 Primary inductance (L1) and secondary inductance (L2)

L1 and L2 can be measured directly by connecting the instrument as shown in Figure 5-19. All other
windings should be left open. Note that the inductance measurement result includes the effects of
capacitance. If the equivalent circuit analysis function of the Agilent’s impedance analyzer is used,
the individual values for inductance, resistance, and capacitance can be obtained.

Leakage inductance is a self-inductance due to imperfect coupling of the transformer windings and
resultant creation of leakage flux. Obtain leakage inductance by shorting the secondary with the
lowest possible impedance and measuring the inductance of the primary as shown in Figure 5-20.

Figure 5-19. Primary inductance measurement Figure 5-20. Leakage inductance measurement
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R 1, R  : DC resistance of windings2

C: Inter-winding capacitance

M: Mutual inductance
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5.3.2 Inter-winding capacitance (C) 

The inter-winding capacitance between the primary and the secondary is measured by connecting
one side of each winding to the instrument as shown in Figure 5-21.

5.3.3 Mutual inductance (M) 

Mutual inductance (M) can be obtained by using either of two measurement methods: 

(1) The mutual inductance can be derived from the measured inductance in the series aiding and 
the series opposing configurations (see Figure 5-22 (a).) Since the combined inductance (La) in 
the series aiding connection is La = L1 + L2 + 2M and that Lo in the series opposing connection 
is Lo = L1 + L2 – 2M, the mutual inductance is calculated as M = (La – Lo)/4. 

(2) By connecting the transformer windings as shown in Figure 5-22 (b), the mutual inductance 
value is directly obtained from inductance measurement. When test current (I) flows through 
the primary winding, the secondary voltage is given by V = jwM x I. Therefore, the mutual 
inductance can be calculated from the ratio between the secondary voltage (V) and the primary 
current (I.) However, the applicable frequency range of both measurement techniques is limited 
by the type and the parameter values of transformer being measured. These methods assume 
that the stray capacitance effect, including the distributed capacitance of windings, inter-
winding capacitance, and test lead capacitance, is sufficiently small. To minimize the cable 
capacitance effect for the method shown in Figure 5-22 (b), the Hp test lead length should be 
made as short as possible. It is recommend to use both techniques and to cross-check the 
results.

Figure 5-21. Inter-winding capacitance measurement

Figure 5-22. Mutual inductance measurement
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5.3.4 Turns ratio (N)

Turns ratio (N) measurement technique, which can be used with general impedance measuring
instruments, approximates the turns ratio (N:1) by connecting a resistor to the secondary as shown
in Figure 5-23 (a). From the impedance value measured at the primary, the approximate turns ratio
can then be calculated. Direct turns ratio measurement can be made with a network analyzer or
built-in transformer measurement function (option) of the Agilent 4263B LCR meter. The turns ratio
can be determined from the voltage ratio measurements for the primary and the secondary, as
shown in Figure 5-23 (b). The voltmeter (V2) should have high input impedance to avoid affecting
the secondary voltage. The properties of magnetic core and the effects of stray capacitance limit the
applicable frequency range of the turns ratio measurement methods. 

Figure 5-23. Turns ratio measurement
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The 4263B’s transformer measurement function enables the measurement of the N, M, L1, and the
DC resistance of the primary by changing measurement circuit connections with an internal switch.
Figure 5-24 shows a simplified schematic block diagram for the transformer measurement function
of the 4263B. A test signal is applied to the primary and L1 is calculated from the measured values
of V1 and I1. M is calculated from V2 and I1. N is obtained from the ratio of V1 and V2. In the DC resis-
tance measurement, the applied voltage at the Hcur terminal is DC. The DC resistance value is calcu-
lated from measured DC voltage V1 and current I1.

Using the Agilent 16060A transformer test fixture with the 4263B permits the L2 and DC resistance
measurement for the secondary, along with all the parameters for the primary. The circuit connec-
tion diagram of the 16060A is shown in Figure 5-25.

Figure 5-24. 4263B transformer measurement function schematic block diagram

Figure 5-25. 16060A circuit connection diagram
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5.4 Diode measurement

The junction capacitance of a switching diode determines its switching speed and is dependent on
the reverse DC voltage applied to it. An internal bias source of the measurement instrument is used
to reverse-bias the diode. The junction capacitance is measured at the same time. Figure 5-26 shows
the measurement setup.

For variable capacitance diodes (varactor diode) that use capacitance-bias characteristics, it 
is important to measure capacitance accurately while applying an accurate DC bias voltage. 
Figure 5-27 shows an example of measuring the C-V characteristics of a varactor diode. Use a low
test signal level (typically 20 mV rms) to precisely trace the relationship of the capacitance to the DC
bias voltage.

The varactors for high frequency applications require Q factor or ESR measurement along with
capacitance at a frequency above 100 MHz. The RF I-V measurement instrument is adequate for this
measurement. It is possible to measure Q or ESR with the same setup as for the C-V measurement
by merely selecting the desired parameter.

Figure 5-26. Reverse biased diode measurement setup

Figure 5-27. Varactor C-V characteristics
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5.5 MOS FET measurement

Evaluating the capacitances between the source, drain, and gate of an MOS FET is important in the
design of high frequency and switching circuits. Generally, these capacitances are measured while a
variable DC voltage source is connected to the drain terminal referenced to the source, and the gate
is held at zero DC potential (Figure 5-28). When an instrument is equipped with a guard terminal
and an internal DC bias source, capacitances Cds, Cgd, and Cgs can be measured individually.
Figures 5-29 (a) through (c) show the connection diagrams for an instrument’s High, Low, and
Guard terminals. The guard is the outer conductors of BNC connectors of the UNKNOWN terminals.

The E4980A, with Option E4980A-001 has an independent DC source in addition to an internal DC
bias and allows the Cgs measurement set up to be simplified as sown in Figure 5-29 (d).

Figure 5-28. Capacitance of MOS FET

Figure 5-29. MOS capacitance measurement
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5.6 Silicon wafer C-V measurement

The C-V (capacitance versus DC bias voltage) characteristic of a MOS structure is an important mea-
surement parameter for evaluating silicon wafers. To evaluate the capacitance that varies with
applied DC bias voltage, capacitance is measured at a low AC signal level while sweeping a number
of bias voltage points. Because the device usually exhibits a low capacitance (typically in the 
low picofarads), the instrument must be able to measure low capacitance accurately with a high 
resolution at a low test signal level. Precise bias voltage output is also required for accurate C-V
measurement. Typical C-V measurement conditions are listed in Table 5-2. Auto-balancing bridge
instruments are usually employed to satisfy the required performance.

Figures 5-30 and 5-31 show measurement setup examples using the auto-balancing bridge instrument
(Agilent 4294A, E4980A, etc.) with a wafer prober station. Since the Low terminal of the auto-bal-
ancing bridge instrument is sensitive to incoming noise, it is important that the Low terminal not be
connected to the substrate that is electrically connected to the prober’s noisy ground. If the wafer
chuck (stage) of the prober is isolated from the ground and effectively guarded, the shielding con-
ductor of the 4TP cable can be connected to the prober’s guard terminal to minimize stray capaci-
tance around the probes.

When a device with low resistivity is measured, applied DC voltage decreases due to DC leakage cur-
rent through the device, and this may cause C-V measurement error. Using the DC bias auto level
control (ALC) function helps to lessen this problem.

Table 5-2. Typical C-V measurement conditions

Frequency 10 kHz to 1 MHz
(10 kHz to 100 MHz for a thin gate oxide layer measurement)

Capacitance range 0.0001 to 1000 pF

Capacitance accuracy ±0.1%

Test signal level 20 or 30 mVrms typical

DC bias voltage 0 to ± 40 V

Bias voltage resolution ≤ 10 mV

Bias voltage accuracy ±0.1%
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Figure 5-30. C-V measurement setup using 4TP cable extension

Figure 5-31. C-V measurement setup using 2TP cable extension
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As a result of extremely high integration of logic LSIs using MOS FETs, the thickness of the MOS
FETs’ gate oxide layer is becoming thinner (less than 2.0 nm), and such MOS FETs have been pro-
duced recently. In evaluating these kinds of MOS FETs, leakage current becomes larger by the tun-
neling effect. Since the MOS gate capacitance has high impedance, most of the test signal's current
flows as leakage current. Consequently, the C-V characteristic of MOS FET with a thin gate oxide
layer cannot be measured accurately. To solve this problem, the test frequency should be set higher
(1 MHz or more) than usual to reduce the capacitive impedance across the thin gate oxide layer to
as low as possible. It is also important to simplify the measurement configuration to reduce residu-
als that exist in the measurement path. If you perform high-frequency C-V measurement using the
4TP configuration, the measurement error increases due to the residual inductance of the cable that
is connected between the guard electrodes of probe heads. Also, the compensation does not work
properly because the distance between probes easily varies. To solve this problem, a simplified 2T
configuration with the 42941A impedance probe, as shown in Figure 5-32, is highly recommended
for accurate high-frequency C-V measurement.

Note: Agilent offers an advanced C-V measurement solution for the ultra-thin gate oxide layer that 
uses the Agilent 4294A LF impedance analyzer. To eliminate the effects of tunneling leakage 
current, the MOS gate capacitance is calculated from the result of swept frequency impedance
measurement (|Z| – q) at multiple DC bias points. (Refer to Application Note 4294-3, 
Evaluation of MOS Capacitor Oxide C-V Characteristics Using the Agilent 4294A, literature 
number 5988-5102EN.) 

Figure 5-32. Example of high-frequency C-V measurement system configuration
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5.7 High-frequency impedance measurement using the probe

As shown in Table 5-3, an RF I-V instrument can be used for a wafer’s L, C, and R measurements,
which are measurements in RF frequencies. Figure 5-33 shows an example of a measurement configu-
ration when using the RF I-V instrument. This figure illustrates a measurement system configuration
for using the E4991A RF impedance/material analyzer with a probe. Option E4991A-010, the probe
station connection kit, makes it easier to establish a probing system that can perform on-wafer mea-
surements from 1 MHz to 3 GHz. This kit contains a small test head and an extension cable.

The E4991A has calibration, compensation, and DC bias functions, and compared to a network 
analyzer, the E4991A provides a wider impedance measurement range and stable measurement per-
formance (refer to Section 2.6.)

Table 5-3. Application examples of high-frequency impedance measurements using probe

Figure 5-33. Impedance measurement configuration when using the RF I-V instrument 

Application Parameters DUT Frequency Measurement requirement

Spiral inductor L, Q RFIC for mobile phone GHz - Low inductance (nH range)
- High Q

Transistor, Diode C, D CMOS FET, PIN diode MHz/GHz - Low inductance (nH range)
Transistor/diode - Low capacitance (pF range)
for optical use

Disk head C, D GMR head, magnetic head MHz/GHz - Low inductance

IC package C, L IC package GHz - Low inductance (nH range)
- Low capacitance (pF range)

Memory C, D FRAM, DRAM, SRAM MHz/GHz - Low capacitance (pF range)

Dielectric material C, D Thin film layer, MHz/GHz - Wide impedance range
PC board - Low-loss

Chip L, Q Chip inductor MHz/GHz - Stable contact to small
inductor/capacitor C, D Chip capacitor electrodes

- Wide impedance range
- High Q/Low D
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5.8 Resonator measurement

The resonator is the key component in an oscillator circuit. Crystal and ceramic resonators are com-
monly used in the kHz and MHz range. Figures 5-34 (a) and (b) show typical equivalent circuit and
frequency response for a resonator. A resonator has four primary elements: C, L, R, and Co. C and L
determine the series resonant frequency (fr) and Co and L determine the parallel resonant frequency
(fa.) Qm (mechanical Q) is another measurement parameter used to describe the performance of 
resonators. An impedance analyzer or network analyzer is used to measure the resonator character-
istics.

Figure 5-34. Typical resonator characteristics

In the following methods, note the impedance analyzer has an advantage in the accuracy of the 
measurement results.

Impedance analyzer advantages

• The impedance value at resonant frequency can be read directly. (Network analyzers generally
read in units of dB.)

• Measurement accuracy for low impedance at series resonance and for high impedance at paral-
lel resonance are better than in network analysis.

• Measurement is made by simply connecting the resonator to the test fixture, and residuals can
be removed using the compensation function. (Network analyzers require a π network circuit to
be connected and cannot compensate for all the residuals.)

• By using the equivalent circuit analysis function, all resonator parameters are easily known.
(Network analyzers require complicated calculation or special analysis software to be used.)

Network analyzer advantages

• Faster measurement speed.
• Higher measurement frequency range.
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Agilent’s impedance analyzers are suitable for testing resonators. With their equivalent circuit
analysis function, each resonator parameter can be determined individually. Also the I-BASIC 
programming function facilitates the calculation of Qm and the extraction of other parameters.
Figure 5-35 shows a resonator measurement setup using an auto-balancing bridge instrument for a
frequency range up to approximately 100 MHz. For higher frequency measurement, the same setup
can be used with RF I-V measurement instrument. Take the following precautions to ensure 
accurate measurements:

1. It is often assumed that the series resonant frequency, fr, is coincident with the minimum
impedance point. This is practical for an approximate measurement, but it is not the true value
of fr. The true value of fr is given at θ = 0 and is typically 1 to 2 Hz above the minimum imped-
ance point. Search the 0°-phase angle point for fr measurement.

2. It is important to properly set the oscillator output level; resonators are test-signal dependent.
The minimum impedance value and the series resonant frequency may vary depending on the
applied test signal level. Decrease the test signal level while monitoring the test current (I-moni-
tor function) until the specified test level is obtained.

3. Perform an open/short compensation. Use All Point compensation mode instead of the interpo-
lation mode because the resonator measurements are narrowband. Also, pay special attention
to the short compensation procedure. Improper short compensation will result in measurement
error for fr and the minimum impedance value.

4. Keep the measurement temperature constant. Resonators are temperature sensitive. Place a
resonator into the test fixture with your hand and wait until the series resonant frequency
becomes constant.

Figure 5-35. Resonator measurement setup
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Figures 5-36 (a) and (b) show an example of an impedance-phase characteristic measurement and
equivalent circuit analysis results for a crystal resonator. Equivalent circuit mode (E) serves to
obtain the four-element equivalent circuit parameter values for a crystal resonator.

Figure 5-36. Resonator equivalent circuit mode

(a)

(b)
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5.9 Cable measurements

The characteristic impedance (Z(Ω)) capacitance per unit length (C (pF/m)), and the propagation 
constants α (dB/m) and β (rad/m) are parameters commonly measured when evaluating cables.
Figure 5-37 shows a measurement setup for coaxial cable using an auto-balancing bridge type
impedance analyzer and the 16047E test fixture. Note that the High terminal of the test fixture is
connected to the outer conductor of the cable. This measurement setup avoids the effects of noise
picked up by the outer conductor of the cable and is important to regard when the cable length is
long. The characteristic impedance and propagation constants are determined by measuring the
impedance of the cable with its other end opened and shorted (open-short method), and calculating
using the equations shown in Figure 5-37. The I-BASIC programming function of the impedance 
analyzer facilitates the calculations required. Figure 5-38 demonstrates an example of measured
characteristic impedance versus frequency.

Figure 5-37. Coaxial cable measurement setup and parameter calculation



Figure 5-38. Measurement result

5.9.1 Balanced cable measurement

A balun transformer is required for measuring balanced cable because the instrument’s UNKNOWN
terminal is unbalanced (refer to Section 5.10.) Figure 5-39 shows the measurement setup for a 
balanced cable. A balanced/unbalanced 4T converter (Agilent part number 16314-60011) can be
used to measure balanced cables from 100 Hz to 10 MHz using an auto-balancing bridge instrument.
For measurement using a network analyzer, 16315-60011, 16316A, and 16317A are available. These
converters have different characteristic impedance to allow impedance matching with DUT (cable)
impedance of 50, 100 and 600 Ω, respectively, as shown in Table 5-4.

Table 5-4. 16314-60011, 16315-60011, 16316A, and 16317A

Figure 5-39. Balanced cable measurement setup

Converter Characteristic impedance Applicable instrument

Unbalanced Balanced
side side

16314-60011 50 Ω 50 Ω Auto-balancing bridge instrument

16315-60011 50 Ω 50 Ω Network analyzer

16316A 50 Ω 100 Ω
16317A 50 Ω 600 Ω
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5.10 Balanced device measurement

When a balanced DUT (such as balanced cable or the balanced input impedance of a differential
amplifier) is measured, it is necessary to connect a “balun” (balance-unbalance) transformer
between the instrument and the DUT. Looking from the DUT side, the UNKNOWN terminals of the
impedance measurement instrument are in an “unbalanced” configuration. Figure 5-40 (a) shows an
example of an auto-balancing bridge instrument. Its Low terminal is considered a virtual ground
because it is held at approximately a 0 V potential. When a 1:1 balun transformer is connected as
shown in Figure 5-40 (b), the instrument can measure a balanced DUT directly.

Figure 5-40. Balanced device measurement

An actual balun transformer has a limited frequency range. The measurement must be made within
its frequency range. In addition to Agilent’s balanced/unbalanced converters, various types of com-
mercial balun transformers are available for various frequency ranges. To select the appropriate
balun transformer, check the frequency range and the impedance of the transformer’s balanced
(DUT) side. Its impedance should be close to the characteristic impedance of the DUT. The imped-
ance of the unbalanced side should be 50 or 75 Ω as appropriate for the measurement instrument.
Open/short/load compensation for the balun transformer is required when the turns ratio of the
balun transformer used is not 1:1, or when an accurate measurement is needed. Open/short com-
pensation is not adequate because the balun transformer will produce both magnitude (|Z|) and
phase errors due to its transfer function characteristic. The terminal connectors of the balanced side
should be connectable for both the standard devices used for open/short/load compensation and the
DUT. Figures 5-41 (a) through (d) show an example of an actual balun configuration and compensa-
tion.



Figure 5-41. Measurement setup
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5.11 Battery measurement

The internal resistance of a battery is generally measured using a 1 kHz AC signal. It is not allowed
to directly connect a battery to the auto-balancing bridge type impedance measurement instrument.
If a battery is connected directly, the instrument becomes the DC load, typically 100 Ω for the 
battery. The instrument may be damaged by a discharge current flow from the battery. Figure 5-42
shows the recommended setup for this measurement. C1 and C2 block DC current from flowing into
the instrument. The value of C1 should be calculated using the minimum measurement frequency.
For example, when the measurement is made at 1 kHz and above, C1 should be larger than 32 µF.
The voltage rating of C1 and C2 must be higher than the output voltage of the battery.

Note: The Agilent 4338B milliohm meter can measure the internal resistance of a battery up to 40 V
DC directly connected to the measurement terminals because the DC blocking capacitors 
have been installed in the 1 kHz bridge circuit.

Figure 5-42. Battery measurement setup
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5.12 Test signal voltage enhancement

When measuring the impedance of test signal level dependent devices, such as liquid crystals, induc-
tors, and high value ceramic capacitors, it is necessary to vary the test signal voltage. Many of the
auto-balancing bridge instruments employ a test signal source whose output is variable, typically
from 5 mV to 1V rms. Particularly, the E4980A precision LCR meter with Option E4980A-001 can
output a test signal voltage of up to 20 V rms and is the most suitable for this application.

In some cases, measurement needs exist for evaluating impedance characteristics at large test signal
voltages beyond the maximum oscillator output level of the instrument. For auto-balancing bridge
instruments, output voltage enhancement is possible if the test signal is amplified as shown in
Figure 5-43. A voltage divider is also required so that the input voltage of the Hp terminal is the
same as the output voltage of the Hc terminal. The DUT’s impedance is a concern. Because the 
current flowing through the DUT is also amplified and flows directly into the Rr circuit, it should
not exceed the maximum allowable input current of the Lc terminal. Typically, this is 10 mA. For
example, when a 10 V rms signal is applied to the DUT, the minimum measurable impedance is 
10 V/10 mA = 1 kΩ. Also, it should be noted that measured impedance is 1/A (gain of amplifier) of
an actual DUT’s impedance. For example, when a 10 pF capacitor is measured using ×10 amplifier,
displayed value will be 100 pF.

Note: For RF I-V instrument, it is impossible to amplify the test signal because at the test port the
signal source output is not separate from the voltmeter and current meter inputs.

Figure 5-43. Schematic diagram of test signal voltage enhancement circuit

Figure 5-44 shows a measurement setup example to boost the test signal voltage by factor of 
10 (A = 10). The amplifier used in this application should have constant gain in the measurement
frequency range and output impedance less than 100 Ω. R3 in Figure 5-44 needs to be adjusted to
compensate for the magnitude error in measured impedance and C2 needs to be adjusted for flat fre-
quency response. This can be accomplished by comparing the measured values with known values
of a reference device. For better accuracy, perform the open/short/load compensation at a test sig-
nal level below 1 V rms (not to cause an excessive current to flow in short condition.) The required
circuit constants of the divider are different depending on the input impedance of the Hp terminal
of the instrument.
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Figure 5-44. Connection diagram of test signal voltage enhancement circuit
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5.13 DC bias voltage enhancement

DC biased impedance measurement is popularly used to evaluate the characteristics of the device
under conditions where the device actually operates in circuits. The internal DC bias function of
impedance measurement instruments is normally designed to apply a bias voltage to capacitor
DUTs. It is suited to DC biased capacitor measurements.

Maximum applicable bias voltage is different for instruments. The internal bias source can typically
output a variable bias voltage of up to ±40 V through the Hc terminal. An external DC voltage source
is required to apply a DC bias voltage that must exceed the limits of the internal DC bias function.
Some instruments have a DC bias input terminal for connecting an external DC voltage source. Use
an external bias fixture or adapter for other instruments with no internal DC bias and for DC bias
requirements that exceed the maximum voltage of the bias input terminal. Table 5-5 lists the avail-
able bias fixture and adapters.

Table 5-5. External bias fixture and adapters

Note: Applicable DUT types for the 16065C and 16200A depend on the test fixture connected.

Use the 16065A external voltage bias fixture, which has a built-in protection circuit, for leaded
devices and high voltage DC bias of up to ±200 V. Figure 5-45 shows the setup for a +200 V DC
biased measurement. Since the 16065A is equipped with a bias monitor output, a digital voltmeter is
used to monitor the DC bias voltage actually applied to the DUT. The 16065C external voltage bias
adapter is designed to apply a bias voltage of up to ±40 V from an external voltage source. This
adapter can be connected between any 4TP test fixture and the instrument’s UNKNOWN terminals,
thus allowing the use of an appropriate test fixture that accommodates the DUT. The 16200B exter-
nal DC bias adapter operates specifically with the RF I-V measurement instruments and the 4294A
with the 42942A. This adapter resolves both voltage bias and current bias needs. When used for
capacitor measurements, it allows a bias voltage of up to 40 V DC across the DUT by using an exter-
nal DC voltage source.

5-34

Model Product Applicable Maximum Usable Applicable
number type instrument bias voltage frequency DUT type*

and current range

16065A Bias fixture Auto-balancing ± 200 V, 50 Hz to Leaded
bridge 2 mA 2 MHz

16065C Bias adapter Auto-balancing ± 40 V, 50 Hz to Leaded and
bridge 20 mA 2 MHz SMD

16200B Bias adapter RF I-V ± 40 V, 5 A 1 MHz to Leaded and
4294A+ 1 GHz SMD
42942A



Figure 5-45. External DC bias measurement setup

5.13.1  External DC voltage bias protection in 4TP configuration

If the measurement frequency is above 2 MHz or the type of DUT is not suitable for these external
bias fixtures, it is recommended that a protective circuit, shown in Figure 5-46, is used. This circuit
is usable with bias voltage up to ±200 V. To reduce the effects of this additional circuit, perform the
open/short compensation with no bias voltage applied.

Figure 5-46. External DC voltage bias protection circuit
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5.14 DC bias current enhancement

DC current biasing is used for inductor and transformer measurement. In the low frequency region,
the E4980A or 4284A precision LCR meter with the 42841A bias current source are both suitable for
this application because they can apply up to 20 A of bias current. (This can be extended up to 40 A
if two 42841As are connected in parallel.)

To deliver a bias current in RF impedance measurement, the 16200B external DC bias adapter can
be used with the RF I-V measurement instrument. The 16200B allows you to supply a bias current of
up to 5 A across the DUT by using an external DC current source. The 16200B is directly attached to
the 7-mm test port and the test fixture onto the 16200B as shown in Figure 5-47. To minimize the
bias adapter-induced errors, perform open/short/load calibration at the test fixture terminals with
no bias voltage/current applied.

Figure 5-47. External DC bias measurement using the RF I-V measurement instrument
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5.14.1 External current bias circuit in 4TP configuration

For external current bias measurement using other auto-balancing bridge instruments, an external
DC current source and a protection circuit are required. The following describes a protection circuit
that can be used for DC bias current measurements up to 10 A. Figure 5-48 shows the protection cir-
cuit schematic diagram.

Figure 5-48. External current bias protection circuit

Take caution of electrical shock hazards when using the external DC bias circuit.

A large energy is charged in L1 and L2, as well as the DUT (Lx), by a bias current delivered from 
an external power supply and when the DUT is disconnected from the measurement circuit, the
DUT generates a very high spike voltage (kick-back voltage) to discharge the energy. To ensure oper-
ator safety, decrease the bias current to zero before disconnecting the DUT.

L1 and L2 discharge through the protection circuit the instant the DUT is disconnected from the 
measurement circuit or when the bias current is turned off. To prevent the instrument from being 
damaged by harmful discharge, the protection circuit must be designed carefully for the withstand-
ing voltage/current rating of each circuit component. Refer to Application Note 346 A Guideline for
Designing External DC Bias Circuit for more information.

5-37



5.15 Equivalent circuit analysis and its application

Agilent’s impedance analyzers are equipped with an equivalent circuit analysis function. The pur-
pose of this function is to model the various kinds of components as three- of four-element circuits.
The values of the component’s main elements and the dominant parasitics can be individually deter-
mined with this function.

Many impedance measurement instruments can measure the real (resistive) and the imaginary
(inductive or capacitive reactance) components of impedance in both the series and parallel modes.
This models the component as a two-element circuit. The equivalent circuit analysis function
enhances this to apply to a three- or four-element circuit model using the component’s frequency
response characteristics. It can also simulate the frequency response curve when the values of the
three- or four-element circuit are input.

Impedance measurement at only one frequency is enough to determine the values of each element in
a two-element circuit. For three- or four-element circuits, however, impedance measurements at
multiple frequencies are necessary. This is because three (four) equations must be set up to obtain
three (four) unknown values. Since two equations are set up using one frequency (for the real and
imaginary), one more frequency is necessary for one or two more unknowns. The equivalent circuit
analysis function automatically selects two frequencies where the maximum measurement accuracy
is obtained. (This is at the frequency where the √

—
2 × minimum value or 1/√

—
2 × maximum value is

obtained.) If the equivalent circuit model (described later) is properly selected, accuracy for
obtained values of a three- or four-element circuit is comparable to the measurement accuracy of
the instrument.

The equivalent circuit analysis function has five circuit modes as shown in Figure 5-49, which also
lists their applications. The following procedure describes how to use the equivalent circuit analysis
function.

1. Perform a swept frequency measurement for the unknown DUT using the |Z| – θ or |Y| – θ
function. The sweep mode can be either linear or logarithmic.

2. Observe the frequency response curve. See the typical frequency response curve given in 
Figure 5-49. Choose the circuit mode that is most similar to the measured curve.

3. Calculate the equivalent parameters by pressing the “Calculate Parameter” key (or the key with
the same function.) Three or four values for selected circuit mode are calculated and displayed.

4. Check the simulated frequency response curve. The simulated curve is calculated from the
obtained equivalent parameters. If the fitting quality between the simulated curve and the actu-
al measurement results is high, the proper circuit mode was selected. If not, try one of other cir-
cuit modes.
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Figure 5-49. Equivalent circuit models

If the simulated frequency response curve partially fits the measurement results, it can be said that
the selected circuit mode is proper only for that part of the frequency range that it fits. Figure 5-50
(a) shows an example measurement for a low value inductor. As shown in Figures 5-50 (b) and (c),
the measurement result does not agree with the simulated curves over the full frequency range. The
higher frequency region is well simulated by circuit mode A and the lower frequency region by 
circuit mode B. In other words, the circuit mode for the inductor is like the circuit mode A at the
higher frequencies and like circuit mode B at lower frequencies. At the higher frequencies C and R
in parallel with L are the dominant elements and circuit mode A describes the response curve best.
At the lower frequencies L and series R are the dominant circuit elements and circuit B describes
the response curve best. From these facts, we can determine that the real circuit mode should be the
combination of circuit modes A and B, and is like Figure 5-51 (a). Figure 5-51 (b) lists an I-BASIC
program to simulate the frequency response for the circuit given in Figure 5-51 (a). The value of 
Rs should be keyed in from the front panel and entered into the internal register, so that the calcula-
tion can be executed and the simulated curve obtained. In this example, the simulated curve agreed
with the actual result as shown in Figure 5-51 (c) when the value of Rs is 1 Ω.
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Figure 5-50. Frequency response simulation for a low-value inductor

Figure 5-51. Equivalent circuit enhancement
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10 DIM Ztrc(1:201,1:2),Fmta$[9],Fmtb$[9]
20 DIM Ttrc(1:201,1:2)
30 DIM R(201),R1(201)
40 DIM X(201)
50 DIM Zdat(1:201,1:2)
60 DIM Tdat(1:201,1:2)
70 !
80 DEG
90 !
100 IF SYSTEM$(“SYSTEM ID”)=”HP4294A” THEN
110 ASSIGN @Agt4294a TO 800
120 ELSE
130 ASSIGN @Agt4294a TO 717
140 END IF
150 !
160 OUTPUT @Agt4294a;”FORM4”
170 !
180 OUTPUT @Agt4294a;”TRAC A”
190 OUTPUT @Agt4294a;”FMT?”
200 ENTER @Agt4294a;Fmta$
210 OUTPUT @Agt4294a;”OUTPMTRC?”
220 ENTER @Agt4294a;Ztrc(*)
230 !
240 OUTPUT @Agt4294a;”TRAC B”
250 OUTPUT @Agt4294a;”FMT?”
260 ENTER @Agt4294a;Fmtb$
270 OUTPUT @Agt4294a;”OUTPMTRC?”
280 ENTER @Agt4294a;Ttrc(*)
290 !
300 OUTPUT @Agt4294a;”DATMEM”
310 !
320 INPUT “Rs=”,Rs
330 !
340 FOR I=1 TO 201
350 R(I)=Ztrc(I,1)*COS(Ttrc(I,1))
360 X(I)=Ztrc(I,1)*SIN(Ttrc(I,1))
370 R1(I)=R(I)+Rs
380 Zdat(I,1)=SQR(R1(I)^2+X(I)^2)
390 Tdat(I,1)=ATN(X(I)/R1(I))
400 NEXT I
410 !
420 OUTPUT @Agt4294a;”TRAC A”
430 OUTPUT @Agt4294a;”FMT “&Fmta$
440 OUTPUT @Agt4294a;”INPUDTRC “;Zdat(*)
450 !
460 OUTPUT @Agt4294a;”TRAC B”
470 OUTPUT @Agt4294a;”FMT “&Fmtb$
480 OUTPUT @Agt4294a;”INPUDTRC “;Tdat(*)
490 !
500 GOTO 320
510 END

(a)

(a)

(b) Circuit mode A (c) Circuit mode B

(b)

(c)



Measurement accuracy can be improved by taking advantage of the equivalent circuit analysis.
Figure 5-52 (a) shows an Ls-Q measurement example for an inductor. In this example, an impedance
analyzer measures the Q value at 10 MHz. Measured data read by MARKER is Ls = 4.78 µH and 
Q = 49.6. The Q measurement accuracy for this impedance at 10 MHz is calculated from the instru-
ment’s specified D measurement accuracy of ±0.011, and the true Q value will be between 32 and
109. The reason that the uncertainty of the Q value is so high is that the small resistive component
relative to reactance cannot be measured accurately. It is possible to measure the resistive 
component accurately if the inductive component is canceled by the capacitance connected in series
with the inductor. When a loss-less capacitor of 1/(ω2L) = 53 pF is connected, the inductor will 
resonate at 10 MHz. (In this example, a 46 pF capacitor is used for resonance.) Figure 5-52 (b) shows
the |Z| - θ measurement results when a 46 pF capacitor is connected. This result can be modeled
using circuit mode D, and the value of R is calculated to be 8.51 Ω. The value of L is obtained as 
4.93 µH. Since the equivalent circuit analysis function uses approximately 8.51 × √

—
2 Ω data to calcu-

late the R value, the specified measurement accuracy for a 12 Ω resistance measurement can be
used and is ±1.3 percent. Therefore, the Q value can be calculated from Q = ωLs/R = 36.4 with an
accuracy of ±2.4% (sum of the L accuracy and R accuracy.) In this measurement, the capacitance
value does not have to be exactly the calculated value but the loss of the capacitor should be very
small because it will affect the calculated Q value.

Figure 5-52. Q measurement accuracy improvement
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Appendix A. The Concept of a Test Fixture’s Additional Error

A.1 System configuration for impedance measurement

Frequently the system configured for impedance measurements uses the following components 
(see Figure A-1.)

1. Impedance measurement instrument
2. Cables and adapter interfaces
3. Test fixture

Figure A-1. System configuration for impedance measurement

The impedance measurement instrument’s accuracy is defined at the measurement port of the
instrument. This means that the accuracy of the measurement values at the measurement port is
guaranteed and has calibration traceability. 

In an actual measurement, there can be an extension of the measurement port with a cable or an
adapter conversion to match the test fixture’s terminal configuration. For this reason, cables and
conversion adapters are provided for connectivity with the measurement port. These cables (and
adapters) are designed to maintain high accuracy of the measurement instrument while extending
the measurement port. Most of the time, the measurement accuracy of the instrument and the cable
(or adapter) are specified together as a whole. 

A test fixture is an accessory used to connect the DUT to the measurement instrument. Many test fix-
tures are provided to adapt to various shapes and sizes of DUTs. A test fixture is either connected
directly to the measurement port of the instrument, or to the port of the extension cable or conver-
sion adapter, as described earlier. The test fixture’s structure determines the applicable frequency
and impedance ranges. Hence, it is necessary to use the appropriate test fixture for the desired mea-
surement conditions. In addition, each test fixture has its own inherent characteristic error, which is
detailed in its operation manual.

A.2. Measurement system accuracy

The equation for the accuracy of a measurement system is:

(Measurement accuracy) = (Instrument’s accuracy) + (Test fixture’s error)

The measurement instrument’s accuracy is determined by an equation with terms that are depen-
dent on frequency, measured impedance, signal level, and measurement time mode. By substituting
the respective measurement conditions into the equation, the measurement accuracy is calculated. If
a cable or a conversion adapter is used, then the specified measurement accuracy is the accuracy of
the measurement instrument with the cable or adapter. This combined measurement accuracy is
shown in the instrument’s operation manual. 



Typical equations for determining the test fixture's error are:

Ze = ±{ A + (Zs/Zx + Yo × Zx) × 100} (%)
De = Ze/100 (D ≤ 0.1)

Ze: Additional error for impedance (%)
De: Additional error for dissipation factor
A: Test fixture’s proportional error (%)
Zs/Zx × 100: Short offset error (%)
Yo × Zx × 100: Open offset error (%)
Zs: Test fixture’s short repeatability (Ω)
Yo: Test fixture’s open repeatability (S)
Zx: Measured impedance value of DUT (Ω)

Proportional error, open repeatability, and short repeatability are mentioned in the test fixture’s
operation manual and in the accessory guide. By inputting the measurement impedance and 
frequency (proportional error, open repeatability, and short repeatability are usually a function of
frequency) into the above equation, the fixture’s additional error can be calculated. 

A.2.1 Proportional error 

The term, proportional error, A, is derived from the error factor, which causes the absolute imped-
ance error to be proportional to the impedance being measured. If only the first term is taken out of
the above equation and multiplied by Zx, then ∆Z = A × Zx (Ω). This means that the absolute value of
the impedance error will always be A times the measured impedance. The magnitude of proportional
error is dependent upon how precisely the test fixture is constructed to obtain electrically and
mechanically optimum matching with both the DUT and instrument. Conceptually, it is dependent
upon the simplicity of the fixture’s equivalent circuit model and the stability of residuals.
Empirically, proportional error is proportional to the frequency squared. 

A.2.2 Short offset error

The term, Zs/Zx x 100, is called short offset error. If Zx is multiplied to this term, then ∆Z = Zs (Ω).
Therefore, this term affects the absolute impedance error, by adding an offset. Short repeatability,
Zs, is determined from the variations in multiple impedance measurements of the test fixture in
short condition. After performing short compensation, the measured values of the short condition
will distribute around 0 Ω in the complex impedance plane. The maximum value of the impedance
vector is defined as short repeatability. This is shown in Figure A-2. The larger short repeatability is,
the more difficult it is to measure small impedance values. For example, if the test fixture’s short
repeatability is ±100 mΩ, then the additional error of an impedance measurement under 100 mΩ
will be more than 100 percent. In essence, short repeatability is made up of a residual resistance and
a residual inductance part, which become larger as the frequency becomes higher.

Figure A-2. Definition of short repeatability A-2



A.2.3 Open offset error

The term, Yo x Zx x 100 is called open offset error. If Zx is multiplied to this term, then ∆Y = Yo. This
term affects the absolute admittance error, by adding an offset. Open repeatability, Yo, is determined
from the variations in multiple admittance measurements of the test fixture in the open condition.
After performing open compensation, the measured values of the open condition will distribute
around 0 S in the complex admittance plane. As shown in Figure A-3, the maximum value of the
admittance vector in the complex admittance plane is defined as open repeatability. The larger open
repeatability is, the more difficult it is to measure large impedance values. Open repeatability is
made up of a stray conductance and a stray capacitance part, which become larger as the frequency
becomes higher.

Figure A-3. Definition of open repeatability

A.3 New market trends and the additional error for test fixtures

A.3.1 New devices

Recently, the debut of extremely low ESR capacitors, and the trend to use capacitors at much higher
frequencies, have increased demand for low impedance measurements. As a result, the test fixture’s
short repeatability has become increasingly important. In Figure A-4, the relationship between 
proportional error, short offset error, and frequency are shown when measuring low impedance of
100 mΩ and 10 Ω. Notice that when the measured impedance is less than 100 mΩ, short offset error
influences the entirety of the test fixture’s inherent error. As shown in the Figure A-4, when the
DUT's impedance is 100 mΩ and the test fixture’s short repeatability is 10 mΩ, the short offset error
will be 10 percent. Since the proportional error is minimal in low frequencies, the additional error
will also be 10 percent. 

Figure A-4. Relationship between proportional error, short offset error, and frequency when measuring low impedance

A-3



Until recently, to allow for additional error in test fixtures it was common to just specify the propor-
tional error (A.) As shown in the 10 Ω measurement case, if the measured impedance is large in
comparison to the test fixture’s short repeatability, then the short offset error can be ignored com-
pletely. This is the reason why open and short offset error was not previously specified. This is the
reason for test fixtures that are only specified with proportional error. On the contrary, for mea-
sured impedance from 1 Ω to 10 kΩ, proportional error (A) alone is sufficient to express the test fix-
ture’s additional error.

A.3.2 DUT connection configuration

In order to make short repeatability small, there are test fixtures that use the 4T connection configu-
ration (for example, Agilent 16044A). By employing this technique, the effect of contact resistance is
reduced and short repeatability is significantly improved. As a result, the range of accurate low
impedance measurements is expanded down to a low milliohm region.

Figure A-5 shows the difference between the 2T connection and the 4T connection. In a 2T connec-
tion, the contact resistance that exists between the fixture’s contact electrodes and the DUT, is mea-
sured together with the DUT’s impedance. Contact resistance cannot be eliminated by compensation
because the contact resistance value changes each time the DUT is contacted. 

Figure A-5. Two-terminal and four-terminal connection techniques

In a 4T connection, the voltage and current terminals are separate. Since the voltmeter has high
input impedance, no current flows into the voltage terminals. Hence, the voltage that is applied
across the DUT can be accurately detected without being affected by the contact resistance. Also, the
current that flows through the DUT flows directly into the current terminal and is accurately detect-
ed without being affected by the contact resistance. As a result, the 4T connection method can elimi-
nate the effect of contact resistance and realize a small short repeatability. By using a 4T test fixture,
it is possible to measure low impedance with better accuracy than that which can be measured with
a 2T test fixture.

The 2T test fixture can be used up to a higher frequency than the 4T test fixture. Since the 2T test
fixture has a simple DUT connection configuration, the effects of residuals and mutual coupling
(jwM), which cause measurement error to increase with frequency, are smaller than those of the 4T
test fixture and can be effectively reduced by compensation. Thus, the 2T connection is incorporated
in test fixtures designed for use in the higher frequency region (typically up to 40 or 110 MHz.)
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A.3.3 Test fixture’s adaptability for a particular measurement 

In order to make use of what has been discussed previously, the test fixture’s adaptability for a par-
ticular measurement will be discussed. To see whether a test fixture is adaptable, it is important to
think about the test fixture’s additional error (proportional error, short repeatability, and open
repeatability), measurement impedance, and the test frequency range. 

If the measurement impedance is in the 1 Ω to 10 kΩ range, use only proportional error to calculate
the additional error of the test fixture. It is fine to assume that this is a close approximation to the
fixture’s additional error. 

If the measurement impedance is not in this range, use proportional error, short repeatability, and
open repeatability to calculate the test fixture’s additional error. Recent test fixtures have all three
terms specified in their operation manual, so use these values for the calculation. 

Some of the recent test fixtures (16044A), due to their structure, have different performance charac-
teristics with different measurement instruments. For these test fixtures, refer to their operation
manual for more details about the specifications. 

If the test fixture is not specified with short and open repeatability, how can the fixture’s adaptability
be determined? To measure a test fixture’s short repeatability, measure the impedance of the short
condition after performing short compensation. Take the shorting plate out of the fixture and then
replace it. Measure the short condition again. By repeating this process at least 50 times, it will show
the variations in the measured impedance of short condition (see Figure A-6.) The final step to 
determine an approximation of short repeatability is to add a margin to the values obtained. For
open repeatability, measure the admittance of the test fixture’s open condition. In the same way,
determine open repeatability by measuring at least 50 times.

Figure A-6. Measurement of short repeatability (16034G)

Specifications of
short repeatability

Actual measurement
of short repeatability



Measurement settings
Measurement instrument: 4294A
Measurement frequency: 40 Hz to 10 MHz
Measurement parameter: Z - θ
Compensation: Performed short compensation
Bandwidth: 3
Measurement method: Inserted the shorting plate, measure the short condition, and remove

the shorting plate. Repeated this 50 times
Display method: Overlaying traces by using the accumulate mode

Lastly, a method of visually analyzing the accurate measurement range of a test fixture is intro-
duced. This method is only appropriate when all three error-terms (proportional error, open
repeatability, and short repeatability) are known. Table A-1 shows the additional error of the
16034G. The whole equation, with all three terms, can be solved for measurement impedance rather
than additional error, for example when additional error is equal to 0.5 percent. If the obtained
impedance values are plotted with measurement impedance (y-axis) versus frequency (x-axis), 
a graph similar to the one shown in Figure A-7 can be obtained. The area inside the plotted 
curve shows the range of impedance that can be measured with an additional error better than 
0.5 percent. In the same way, other graphs can be drawn with other additional error values to better
visualize the accuracy for a given impedance and frequency range. The operation manuals of recent
test fixtures present such graphs.

Table A-1. Additional error of 16034G

A-6

Type of error Impedance

Proportional error 0.5 × (f/10)2 [%]

Open repeatability 5 + 500 × (f/10) [nS]

Short repeatability 10 + 13 × (f/10) [mΩ]

Figure A-7. Range of impedance measurable with additional error ≤ 0.5 percent



Appendix B: Open/Short Compensation

The open/short compensation used in Agilent’s instrument models the residuals of a test fixture or
test leads as a linear four-terminal network (a two-terminal pair network) represented by parame-
ters A, B, C, and D (shown in Figure B-1.) This circuit model is basically same as that used in
open/short/load compensation.

Figure B-1.  Four-terminal network circuit model of a test fixture or test cables

The difference between open/short and open/short/load compensation is that the open/short 
compensation assumes the unknown network as a “symmetrical network.” From this restriction, the
open/short compensation does not require the load measurement. 

The circuit model shown in Figure B-1 is expressed by using the following matrix equation:

(V1) = (A   B) (V2) (1)
I1 C   D    I2

The relationships between V1, I1, V2, and I2 are given by the following equations:

{V1 = AV2 + BI2

I1 = CV2 + DI2

The measured impedance of the DUT, Zxm, is expressed as:

Zxm = 
V1 =

AV2 + BI2 (2)
I1 CV2 + DI2

On the other hand, the true value of the DUT, Zdut, is expressed as: 

Zdut = 
V2 (3)
I2

From equations (2) and (3), the equation that expresses the relationship between Zxm and Zdut is
derived as follows:

A 
V2 + B

Zxm = 
AV2 + BI2 =  

I2 = 
AZdut + B (4)

CV2 + DI2        C 
V2 + D      

CZdut + D
I2

A B
C  D DUTV 2

Unknown 4-terminal
circuit

Measurement
instrument Z du t

I1 I2

V 1

B-1
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Open measurement

When nothing is connected to the measurement terminals (open condition), I2 is 0. Therefore, 
equation (5) is derived by substituting I2 = 0 for I2 in the equation (2). Here, Zo means the impedance
measured with measurement terminals opened. 

Zo = 
AV2 =  

A
c C = 

A (5)
CV2 C Zo

Short measurement

When the measurement terminals are shorted, V2 is 0. Therefore, equation (6) is derived by substi-
tuting V2 = 0 for V2 in the equation (2). Here, Zs means the impedance measured with measurement
terminals shorted.

Zs = 
BI2 =   

B
c B =DZs

(6)
DI2 D

By substituting B = DZs and C = A/Zo (of equations 6 and 5) for the parameters B and C, respectively,
of equation (4), the following equation is derived: 

Zdut = 
B – DZxm

= 
B – DZxm

= 
D(Zs – Zxm) 

=  
D(Zs – Zxm)

Z
(7)

CZxm – A      (Zxm
– 1)  A (Zxm

– 1) A   
(Zxm – Zo)A

Zo Zo

Since the open/short compensation assumes that the unknown network circuit is a symmetrical net-
work, the parameters A and D are equal:

A = D (8)

Thus, equation (7) can be simplified as follows: 

Zdut = 
Zs – Zxm  

Zo
(9)

Zxm – Zo

The definitions of the parameters used in this equation are:
Zdut Corrected impedance of the DUT 
Zxm Measured impedance of the DUT
Zo Measured impedance when the measurement terminals are open
Zs Measured impedance when the measurement terminals are shorted

Note: These parameters are complex values that have real and imaginary components.
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Appendix C: Open, Short, and Load Compensation

Since a non-symmetrical network circuit is assumed, equation (8) in Appendix B is not applied.
Therefore, the relationship between A and D parameters must be determined. The measurement of a
reference DUT (load device) is required to determine A and D.

When the applied voltage across a load device is V2’ and the current flow through it is I2’, the 
impedance of the load device, Zstd, is expressed as:

Zstd = 
V2’ (10)

I2’ 

The measured value of the load device, Zsm, is expressed by using matrix parameters like equation (2)
of open/short compensation, as follow: 

Zsm =  
AV2’ + BI2’ (11)
CV2’ + DI2’

By substituting Zstd for V2’ / I2’ in equation (11), the following equation is derived:

A 
V2’ + B

Zsm = 
AV2’ + BI2’ =  

I2’      = 
AZstd + B (12)

CV2’ + DI2’ C 
V2’ + D     

CZstd + D
I2’

Using equation (5) of open measurement and equation (6) of short measurement, the relationship
between the parameters A and D is expressed by the following equation: 

Zsm = 
AZstd + B  

= 
AZstd + DZs = Zo

AZstd + DZs 
CZstd + D Zstd 

A + D            
AZstd + DZo 

Zo

c D = 
ZstdZsm – ZstdZo

A
(13)

ZoZs – ZsmZo 

By substituting equation (13) for the parameter D of equation (7), the equation for calculating the
corrected impedance of the DUT is derived as follows:

Zdut = 
D(Zs – Zxm)  

Zo = 
ZstdZsm – ZstdZo 

A x
(Zs – Zxm)    

Zo 
(Zxm – Zo)A  ZoZs – ZsmZo  (Zxm – Zo)A 

Zdut = 
(Zs – Zxm)(Zsm – Zo) 

Zstd
(14)

(Zxm – Zo)(Zs – Zsm) 

The definitions of the parameters used in this equation are:

Zdut Corrected impedance of the DUT 
Zxm Measured impedance of the DUT
Zo Measured impedance when the measurement terminals are open
Zs Measured impedance when the measurement terminals are short
Zsm Measured impedance of the load device
Zstd True value of the load device

Note: These parameters are complex values which have real and imaginary components.
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Appendix D: Electrical Length Compensation

A test port extension can be modeled using a coaxial transmission line as shown in Figure D-1.
When an impedance element ZL is connected to the tip of the line, the measured impedance value Zi
at the other end of the line (that is, the test port) is given by the following equation:

ZL + Zo tan h γ
Zi = Zo —————————————————————

ZL tan h γ + Zo

γ = α + jβ = √ZY = √(R+jωL)(G+jωC)

Where, γ: Propagation constant of the transmission line
α: Attenuation constant of the transmission line
β: Phase constant of the transmission line
: Transmission line length

Zo: Characteristic impedance of the transmission line

Figure D-1. Transmission line model of test port extension

The DUT impedance value is therefore calculated as:

Zo tan h γ - Zi
ZL = Zo ———————————————————

Zi tan h γ - Zo

If the transmission line has no propagation loss (α = 0, β = ω√LC
–––

), the equation for ZL is simplified
as follows:

Zi - jZo tan β
ZL = Zo ——————————— 

Zo - jZi tan β

The true ZL value can be calculated if the phase shift quantity, β , is known. Here, the phase con-
stant β is related to the test signal wavelength λ in the transmission line as follows:

2π
β = ———

λ
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When a (virtual) transmission line in which the signal wavelength is equal to the wavelength in a
vacuum is assumed, the virtual line length ( e) that causes the same phase shift (β ) as in the actual
line is given by the following equation:

λo                               2π 2π e
e = ——— (because β = ———— = —————— )

λ λ λo

Where, λo is a wavelength in vacuum
λ is a wavelength in transmission line

Therefore, the phase shift quantity, β , can also be expressed by using the phase constant βo in vac-
uum and the virtual line length e (because β = βo e.) Since the βo value is derived from physical
constants (βo = 2π/λo = ω/c, c: velocity of light), it is possible to represent the phase shift by using
only the virtual line length e.

This virtual line length is specified as the electrical length of the test fixtures and airline extensions.
Accordingly, the compensation procedure to derive the impedance ZL can be simplified by using the
electrical length value. In case of the coaxial line, since the β value is proportional to √

—
C (C: distrib-

uted capacitance of the line), the electrical length is proportional to the square root of the dielectric
constant of the insulation layer between the inner and outer conductors.
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Appendix E: Q Measurement Accuracy Calculation

Q measurement accuracy for auto-balancing bridge type instruments is not specified directly as ±%.
Q accuracy should be calculated using the following equation giving the possible Q value tolerance.

Where, Qt is the possible Q value tolerance
Qm is measured Q value
∆D is D measurement accuracy

For example, when the unknown device is measured by an instrument which has D measurement
accuracy of 0.001, and the displayed Q value is 200, the Q tolerance is calculated as:

This result means that the true Q value will be between 167 and 250.

Note: The following equation may be used to calculate the Q value tolerance. (The result is the same
at that from the above equation.)

Qt
Qm D

Qm D( )
= ± ±

×
×

2

1
∆
∆

Qt =
±

=
1

1
200

0.001

1
0.005 ±0.001

Qt

Qm
D

=
±

1
1

D
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