

POWER ANALYZER PW6001

Power measuring instruments

Improve Power Conversion Efficiency

Industry-Leading Accuracy and Maximum 12 Channels* Hioki Power Analyzers Set Next Generation Standards for Power Efficiency Testing

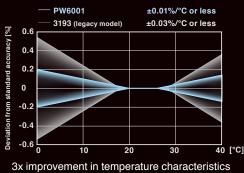
CE

Basic accuracy for power $\pm 0.02\%$

Achieving true power analysis

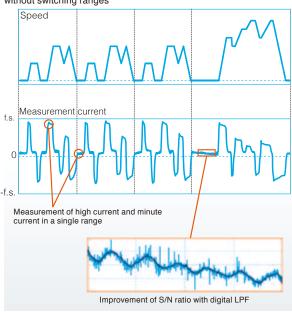
High accuracy, wideband, and high stability. The Hioki PW6001 combines the 3 important elements of power measurement and basic performance backed by advanced technology to achieve unsurpassed power analysis.

Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability


The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of $\pm 0.01\%$ °C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

Solid shield

Optical isolation device

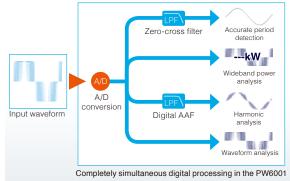

3x improvement in temperature characteristics compared to legacy model

TrueHD 18-bit converter* measures widely fluctuating loads with extreme accuracy

A built-in 18-bit A/D converter provides a broad dynamic range. Even loads with large fluctuations can be shown accurately down to tiny power levels without switching the range. Further, a digital LPF is used to remove unnecessary high-frequency noise, for accurate power analysis.

18-bit resolution

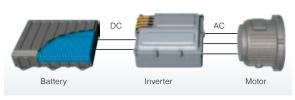
Conversion efficiency measurement during mode measurement without switching ranges


*True HD: True High Definition

Fast, simultaneous calculation functions achieved with Power **Analysis Engine II**

All measurements, including period detection, wideband power analysis, harmonic analysis, and waveform analysis, are digitally processed independently and with no effect on each other. Fast calculation processing is used to achieve a data update speed of 10 ms while maintaining maximum accuracy.

> Accuracy Fast, simultaneous Zero-cross filter guaranteed @ processing 10ms data update



AAF: Antialiasing filter

Filter for preventing aliasing distortion in harmonic calculations

DC accuracy is indispensable for achieving correct efficiency measurements

For example, when measuring the efficiency of a DC/AC converter, not only AC accuracy but also DC accuracy are equally important. With the PW6001, a DC measurement accuracy of ±0.02% rdg. ±0.05% f.s.* delivers correct and stable efficiency measurements. ±0.02% rdg.

Accuracy of efficiency is determined by AC accuracy and DC accuracy.

Get a combined accuracy of ±0.07% rdg. even with current sensor

Add ±0.05% rdg. accuracy of the current sensor to the PW6001's basic accuracy of ±0.02% rdg. to achieve top-of-the-line accuracy of $\pm 0.07\%$. Choose from a diverse array of sensors to cover very small currents from 10mA up to large 1000A loads.

High-accuracy AC/DC current sensors

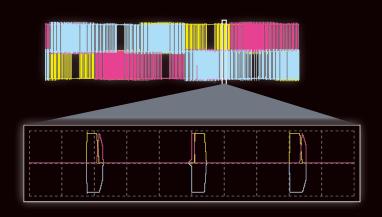
*Effective measurement range

DC accuracy

DC, 0.1 Hz to 2 MHz frequency bandwidth

Broad and flat frequency characteristics

Power measurements across wide bandwidths are required for supporting high-speed switching devices such as SiC.


Compared even to the Hioki 3390 Power Analyzer, the PW6001 is engineered with 10x the frequency band and sampling performance.

High-speed sampling of 5 MS/s for true frequency analysis

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz.

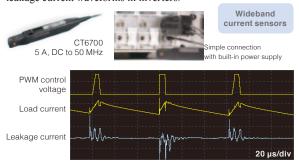
This enables analysis without aliasing error.

Dual sampling

Achieve independent sampling of waveform recordings and power analysis. Sampling for waveform recordings can be set freely, while maintaining a power analysis of 5 MS/s.

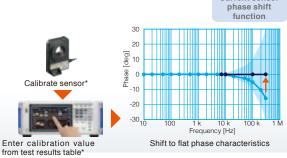
Large capacity waveform storage

Enjoy 1 Mword x 6 channels of data storage for voltage and current, making it possible to record signals for up to 100 seconds (at 10 kS/s).


Analyze waveforms without an oscilloscope

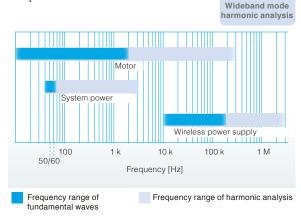
In addition to voltage and current waveforms, torque sensor and encoder signals can also be displayed simultaneously. The PW6001 is also built in with triggers, pre-triggers, other triggers convenient for motor analysis such as for PWM waveforms, as well as encoder pulse triggers.

Wideband current probes supported

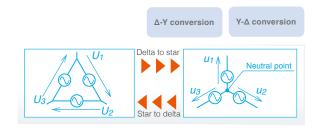

When combined with the HIOKI CT6700, it is also possible to measure minute currents of 1 mA. This is perfect for observing leakage current waveforms in inverters.

Built-in current sensor phase shift function

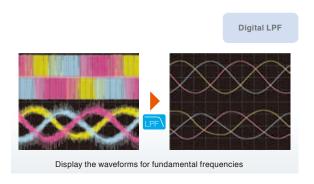
For accurate power measurement, both amplitude accuracy and phase accuracy specifications are important. Use of the phase shift function allows improvements in measurement accuracy for both high-frequency and low power factor signals. Enter the calibration value for the current sensor to optimize accuracy.


Current sensor

*Calibration and test results tables can be purchased separately.


Harmonic analysis up to 1.5 MHz

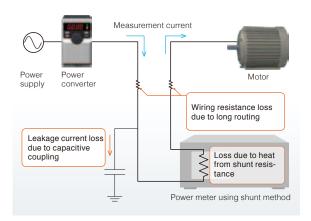
Wideband harmonic analysis is provided as a standard feature to a max. 100th order for fundamental frequencies 0.1 Hz to 300 kHz and an analysis band of 1.5 MHz. Analysis of fundamental waves in motors and measurement of distortion rate in the transmission waveforms for wireless power supplies are now possible.


Unrestricted conversion of phase voltage and line-to-line voltage

Use of the Δ -Y conversion function allows for the calculation of phase voltage and phase power of 3-phase motors whose neutral points cannot be accessed. Further, the Y- Δ conversion function lets you calculate 3-phase 4-wire line-to-line voltage.

Digital LPF for displaying the waveform you want to view

Select a cutoff frequency for the measurement target. Digital LPF greatly reduces noise to let you display the waveform you want to view.

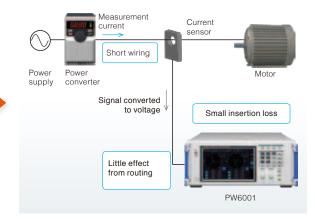


Specially designed for current sensors to achieve highly precise measurement

With direct wire connection method

The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the effects of wiring resistance and capacitive coupling, and meter loss occurs due to shunt resistance, all of which lead to larger accuracy uncertainty.

Measurement example using the direct wire connection method



Advantages of current sensor method

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system.

High-accuracy current sensors

Measurement example using the current sensor method

Compared to the direct wire connection method, measurement with conditions closer to the actual operation environment of a power converter is achieved.

Highly intuitive user interface

Seamless operability

Time spent on operations is reduced, to allow focused concentration on analysis.

Dual knobs for vertical/horizontal manipulation of waveforms

Wiring confirmation function, to avoid wiring mistakes

Enter handwritten memos on the screen, or use the onscreen keypad

Connection confirmation screen

Handwritten memo

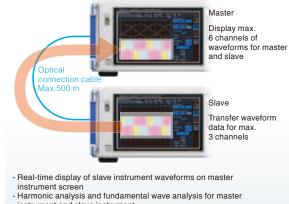
On-screen keypad

9-inch touch screen with soft keypad

Synchronization function for real-time connection of 2 units at a maximum distance of 500 m

Build a 12-channel power meter using "numerical synchronization"

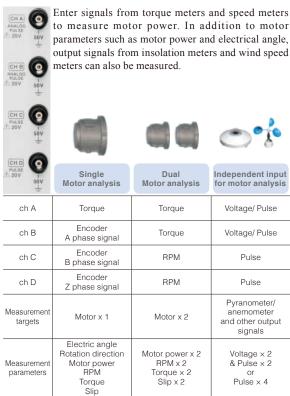
For multi-point measurements, use the numerical synchronization function to transfer power parameters from the slave device to aggregate at the master in real-time, essentially enabling you to build a 12-channel power analysis system


> Numerical synchronization Max. 12 channels

Simply transfer waveforms with "waveform synchronization"

Achieve real-time* transfer of 5 MS/s 18-bit sampling data. Measurement waveforms on the slave instrument are displayed without modification on the master unit, paving the way for new applications for power analyzers, such as measurement of the voltage phase difference between two separate devices. Waveform

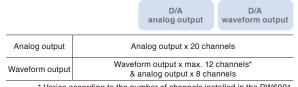
synchronization

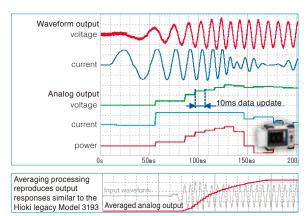


- instrument and slave instrument
- · Simultaneously measure waveforms on master device while using the slave
- *For both master instruments and slave instrument, waveform synchronization operates only when there are 3 or more channels.

Models with motor analysis & D/A output

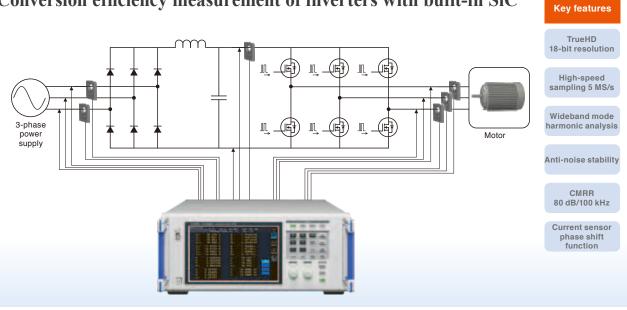
(PW6001-11/-12/-13/-14/-15/-16)


Diverse motor analysis functions


D/A output supporting waveform output

Max. ±5 sampling error

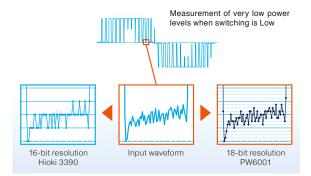
Output analog measurement data at update rates of up to 10ms. Combine with a data logger to record long-term fluctuations, and use the built-in waveform output function to output voltage and current at 1 MS/s*.



* Varies according to the number of channels installed in the PW6001.

*During waveform output, accurate reproduction is possible at an output of 1 MS/s and with a sine wave up to 50 kHz.

Conversion efficiency measurement of inverters with built-in SiC

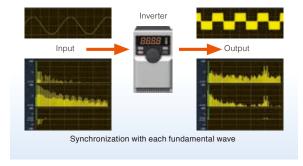


SiC measurement achieved with high resolution

High resolution is required for the high precision measurement of PWM waveforms for SiC semiconductors with low ON resistance. TrueHD 18-bit is achieved at a level of

precision that has never been seen before.

TrueHD 18-bit resolution



Simultaneous harmonic analysis for input/output

Analyze harmonic data that is synchronized to the fundamental waveforms of both the input and output of an inverter.

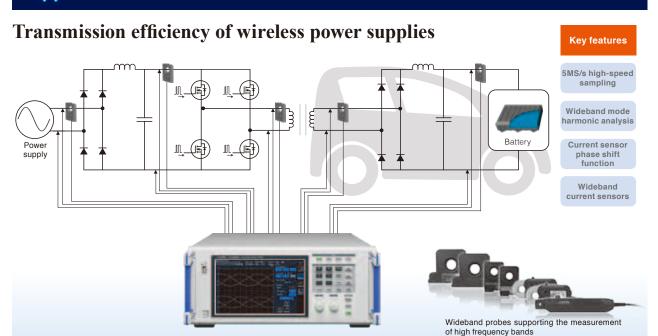
A maximum of 6 systems can be analyzed simultaneously.


Max. 6 systems Simultaneous harmonic analysis

Detailed analysis of PWM waveforms

A cursor readout function*, zoom function*, and trigger/pre-trigger function, which are not available on the Hioki 3390, are built-in on this unit. You can use the touch screen and dual knobs for unrestricted analysis of waveforms.

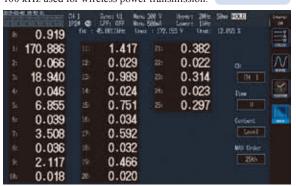
*Available soon. Waveform analysis function


Line-to-line voltage waveform and line current waveform for 3-phase motor

Observe phase voltage waveforms

Use the Δ -Y conversion function to display the calculations for phase voltage at the waveform level from the line-to-line voltage of the motor, enabling you to analyze the harmonics of the phase voltage waveforms.

Ot 125 Spring Ut. Name 200 V. University Into Jahr Spring Ut. Name


Phase voltage waveform using Δ -Y calculation

Harmonic analysis of transmission frequency

Measure the efficiency of wireless power supply devices such as those found in electric vehicles. Use of the wideband harmonic analysis function up to a fundamental wave of 300 kHz allows the analysis of waveform distortion rate

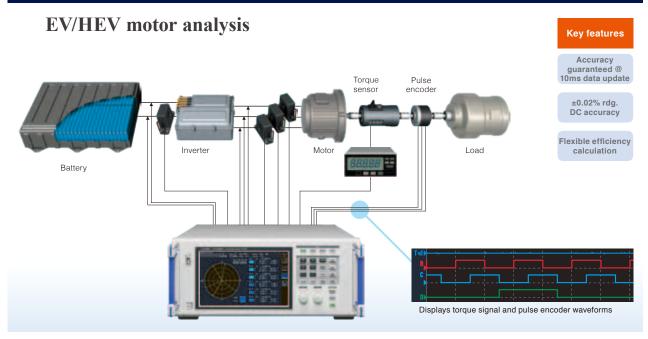
and harmonic waves in the vicinity of 100 kHz used for wireless power transmission.

Save data with a single touch

Use the [SAVE] key to save numerical data, and the [COPY] key to copy the screen. You can also enter comments on the saved data.

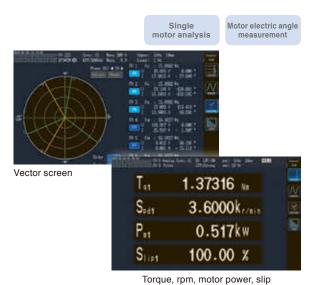
Accurate measurement of low power factor power

With wireless power supplies, the power factor drops due to the inductance component of the sending/receiving elements of energy. Use of the phase shift function in the PW6001 lets you accurately measure both high-frequency and lower power factor power.



Enter phase calibration values for each frequency to correct high-frequency phase characteristics.

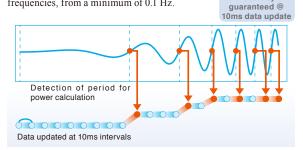
One-touch settings take you to measurement immediately


The built-in easy setup function allows you to simply select the type of measurement line and immediately start measurement using the automated optimum settings.

Advanced electrical angle measurement function

The PW6001 features a built-in electric angle measurement function required for the measurement of motor parameters in high-efficiency synchronized motors and the analysis of vector control via dq coordinate systems. Make real-time measurements of phases for voltage and current fundamental wave components based on encoder pulses. Further, zero-adjustment of the phase angle when induced voltage occurs allows phase measurement at the induction voltage standard. Finally, the PW6001 can detect the forward/reverse from A phase and B phase pulses to enable 4-quadrant analysis of torque and RPM.

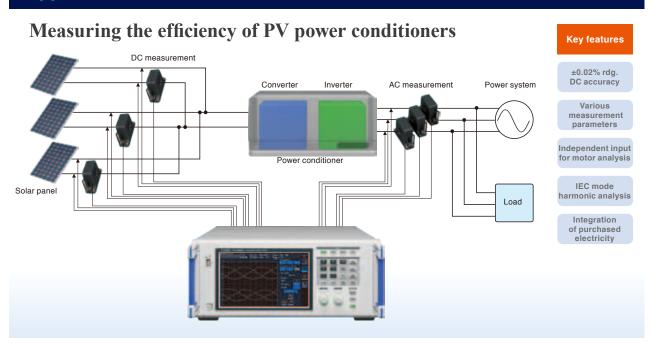
Rackmount support


Optimal full rack size for test benches and production inspection lines

Full rack size

Fast 10 ms calculation of power in transient state

Measure power transient states, including motor operations such as starting and accelerating, at 10ms update rates. Automatically measure and keep up with power with fluctuating frequencies, from a minimum of 0.1 Hz.


Automatic following of fundamental wave even if the frequency fluctuates, from low to high frequencies

Simultaneous measurement of 2 motor powers

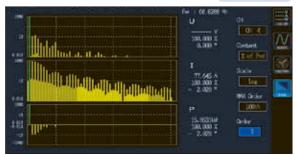
The PW6001 is engineered with the industry's first built-in dual mode motor analysis function that delivers the simultaneous analysis of 2 motors. Simultaneous measurement of the motor power for HEV driving and power generation is now possible.

Example of 2 motor measurement

Assess efficiency and loss at a glance

In addition to the measurement of power generated by solar cells, efficiency rate of conditioners, loss, and the measurement of power from purchased electricity when power systems are linked are also possible at the same time.

Integration


Flexible efficiency

harmonic analysis

of purchased electricity calculation 71 94.02 % P_4 OFF OFF 1.294kW Loss1

Harmonic analysis, important for linking systems

Conveniently evaluate according IEC61000-4-7 using the builtin IEC standard mode. You can also limit the number of THD calculations as required by the standard. IEC mode

Confirm harmonic wave conditions on a bar graph at a single glance

Power conditioner testing

Parameters required for power conditioners, such as fundamental wave reactive power Qfnd, DC ripple rate, and 3-phase unbalanced rate, can be measured and displayed simultaneously. The required measurement data can be viewed at a glance, improving test efficiency. Various measurement

Measure output from environmental sensors

Using the independent input mode in the motor analysis function, you can measure the analog voltage signals from environmental testing devices such as insolation meters, thermometers, wind

Independent input

speed meters, and light meters, on a maximum of 2 channels. The signals can be recorded at the same time as power.

Power conversion for wind power generation Power conditioner Numerical synchronization Max. 12 channels Flexible efficiency calculation Optical connection cable L6000 Data aggregation Slave

Simultaneous analysis of system and power generation

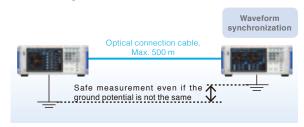
With the dual vector display, you can see the 3-phase balancing conditions for both the system and power generation at a glance.

Measure the efficiency of power conditioners

By using the numerical synchronization function, you can take measurements with complete synchronization of power conditioners for 2 systems. All power parameters can be aggregated on the master instrument, and the efficiency for each or the overall efficiency can be calculated and displayed.

> Numerical synchronization Max. 12 channels

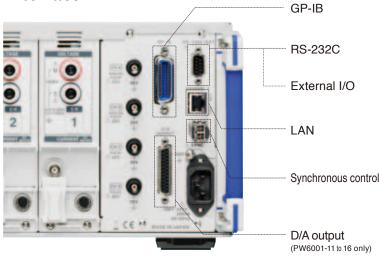
Calculation of efficiency between 2 units


Application 6

Test and evaluate substations, plants and railroads

Measure phase difference between 2 separate points

Use the waveform synchronization function to measure the phase relationship between 2 points separated by a maximum distance of 500 m. Due to insulation with an optical connection cable, measurement can be performed safely even if the ground potential between the 2 points is not the same.


D/A output waveforms captured 500m away

Transfer voltage/current waveforms taken by the slave instrument located as far as 500m away and output the signals from the master device. When combined with a Hioki MEMORY HiCORDER, timing tests and simultaneous analysis of multiple channels for 3-phase power are possible.

^{*} The waveform that is output has a delay of 7 µs to 12 µs, depending on the distance.

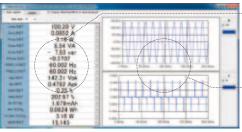
Interface

- View data in free dedicated application
- Command control*
- View data in free dedicated application
- Command control*
- START/ STOP/ DATA RESET control
- Terminals shared with RS-232C, ± 5 V/200 mA power supply possible
- Fast Gbit LAN supported, command control*
- View data in free dedicated application
- Synchronous control Optical connection cable connector, Duplex-LC (2-core)
 - Switching for 20 channels of analog output or maximum 12 channels of waveform + 8 channels of analog ouput

* Download the Communications Command Instruction Manual from the Hioki website.

USB flash drive interface -----

- Save waveform data/measurement data (csv) and screen captures (bmp)
- Real-time save of interval data (csv) at a maximum speed of 10ms


Internal memory

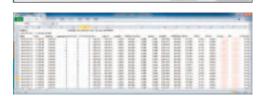
- Save interval data, for transfer later to USB flash drive

PC Communication Software – PW Communicator

(Available soon)

PW Communicator is an dedicated application software for communicating between a PW6001 power meter and a PC. Free download is available from the Hioki website. The application contains convenient functions for setting the PW6001, monitoring the measurement values, acquiring data via communication, computing efficiency, and much more.

Value monitoring


Display the PW6001's measurement values on the PC screen. You can freely select up to 64 values, such as voltage, current, power, and harmonics.

Waveform monitoring

Monitor the voltage, current, and waveforms measured by the meter right on the PC screen.

Meter setting

Configure the connected PW6001 from the PC screen.

Synchronous measurement

Compute the input/output efficiency of a power converter and similar operations when using multiple units of PW6001. In addition to the PW6001, you can also batch control other Hioki power meters, such as the PW3335, PW3336, and PW3337.

Saving data as CSV file

Record 180 or more measurement data to a CSV file at fixed intervals. The shortest interval between recordings is 200 ms.

PW Communicator Specifications

Availability	Free download from the Hioki website
Operating environment	
OS	Windows 8, Windows 7 (32/64-bit)
Memory	2GB or more recommended
Interface	LAN, RS-232C, GP-IB

LabVIEW Driver (Available soon)

A LabVIEW driver compatible with the PW6001 will enable you to acquire data and build measurement systems. (LabVIEW is a registered trademark of National Instruments Corporation.)

Basic Specifications

Power measurement

		1-phase/2-wire (1P2W), 1-phase/3-wire (1P3W), 3-phase/3-wire (3P3W2M, 3V3A, 3P3W3M), 3-phase/4-wire (3P4W)				
	CH1	CH2	CH3	CH4	CH5	CH6
Pattern 1	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W
Pattern 2		3P3W2M	1P2W	1P2W	1P2W	1P2W
Pattern 3	1P3W /	1P3W / 3P3W2M 1P2W			BP3W2M	1P2W
Pattern 4	1P3W /	1P3W / 3P3W2M 1P3W /			1P3W / 3	3P3W2M
Pattern 5	3P3	3P3W3M / 3V3A / 3P4W			1P2W	1P2W
Pattern 6	3P3	3P3W3M / 3V3A / 3P4W			3P3W2M	1P2W
Pattern 7	3P3	W3M / 3V3A / 3	BP4W	3P3	W3M / 3V3A / 3I	P4W
			ons, select 1P3W			
			ons, select 3P3W			
Number of channels	1	2	3	4	5	6
Pattern 1	✓	√	✓	✓	√	1
Pattern 2	-	✓	✓	✓	✓	√
Pattern 3	-	-	-	-	-	✓
Pattern 4	-	-	-	✓	-	~
Pattern 5	-	-	·	✓	✓	✓
Pattern 6	-	-	-	-	✓	√
Pattern 7	-	-	-	-	-	✓
			can be selected		ımber of channe	els:
	[√] Can b	e selected, [-] C	Cannot be selecte	d		
Number of input chann	els Max. 6 ch	annels; each inpu	it unit provides 1 ch	annel for simultar	neous voltage and	current input
Input terminal profile	Voltage	Plug-in t	erminals (safety t	erminals)		
	Probe 1	Dedicate	ed connector (ME	15W)		
	Probe 2		etal) + power sup			
Probe 2 power supply	+12 V ±0.	5 V, -12 V ±0.5 V	, max. 600 mA, up	to a max. of 700	mA for up to 3 ch	nannels
nput method			nit Photoisolated nit Isolated inpu			
Maltaga var			· '		sor (voitage 01	uu
Voltage range	6 V / 15 V	7/30 V / 60 V /	150 V / 300 V / 60	10 V / 1500 V		
Current range (Probe 1)			4 A / 8 A / 20 A			A sensor)
,		/ 20 A / 40 A / 8				A sensor)
		/5 A / 10 A / 20				A sensor)
			A / 200 A / 500 A			0 A sensor)
	20 A / 40	A / 100 A / 200	A / 400 A / 1 kA		(with CT	6865)
(Probe 2)	1 kA / 2 k	A / 5 kA / 10 kA /	20 kA / 50 kA	(with 0.1	mV/A sensor)	
	100 A / 2	00 A / 500 A / 1 k	A/2kA/5kA	(with 1 n	nV/A sensor)	
	10 A / 20	10 A / 20 A / 50 A / 100 A / 200 A / 500 A (with 10 mV/A sensor; with 327			n 3274 or 3275)	
	1 A / 2 A / 5 A / 10 A / 20 A / 50 A (with 100 mV/A sensor; with 33			ith 3273 or 3276)		
			A/1A/2A/5A		/A sensor; with CT	6700 or CT6701)
			V / 2.0 V / 5.0 V			
Power range			IW (depending or		rrent combinatio	ns)
Crest factor		3 (relative to voltage/current range rating); however, 1.33 for 1500 V range, 1.5 for 5 V Probe 2 range				
	300 (rela	nowever, 1.33 for 1500 V range, 1.5 for 5 V Probe 2 range 300 (relative to minimum valid voltage and current input); however, 133 for 1500 V range, 150 for 5 V Probe 2 range				
				/ Probe 2 range		
Input resistance	Voltage		4 MΩ ±40 kΩ			
(50 Hz / 60 Hz)						
	Probe 1		1 MΩ ±50 kΩ	Probe 2 inp	uts 1 M	Ω ±50 kΩ
	Probe 1	inputs	1 MΩ ±50 kΩ 1000 V, ±2000 V	peak (10 ms or l	ess)	
	Probe 1	inputs	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free	peak (10 ms or liquency of 250 kl	ess) Hz to 1 MHz, (12	250 - f) V
	Probe 1	inputs	1 MΩ ±50 kΩ 1000 V, ±2000 V	peak (10 ms or liquency of 250 kl quency of 1 MHz	ess) Hz to 1 MHz, (12	250 - f) V
	Probe 1 Voltage Probe 1	inputs	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1	peak (10 ms or liquency of 250 kl quency of 1 MHz kHz I0 ms or less)	ess) Hz to 1 MHz, (12	250 - f) V
	Probe 1 Probe 1 Voltage	inputs	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for f above:	peak (10 ms or liquency of 250 kl quency of 1 MHz kHz I0 ms or less)	ess) Hz to 1 MHz, (12	250 - f) V
Maximum input voltag	Probe 1 Probe 1 Probe 1 Probe 2 e to Voltage in	inputs inputs inputs inputs inputs input terminal (5	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz)	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess)	ess) Hz to 1 MHz, (12	250 - f) V
Maximum input voltag	Probe 1 Probe 1 Probe 1 Probe 2 e to Voltage is CATIII 60	inputs inputs inputs inputs inputs nput terminal (5 0V; anticipated	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V	ess) Hz to 1 MHz, (12	250 - f) V
Maximum input voltag Maximum rated voltag sarth	Probe 1 Probe 2 e to Voltage is CATIII 60 CATII 100	inputs inputs inputs inputs inputs out inputs out input terminal (5 00'; anticipated 000'; anticipated	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage fret Input voltage fret Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol It ransient overvor	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V Itage: 6000V	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltag Maximum rated voltage earth Measurement method	Probe 1 Probe 1 Probe 2 e to Voltage is CATIII 60 CATIII 100 Voltage/c	inputs inputs inputs inputs inputs ov; anticipated ov; anticipated urrent simultan	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V Itage: 6000V	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltag Maximum rated voltag earth Measurement method Sampling	Probe 1 Probe 2 e to Voltage in CATIII 60 CATII 100 Voltage/c 5 MHz / 1	inputs inputs inputs inputs inputs ov; anticipated ov; anticipated ov; anticipated urrent simultan 8 bits	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage fret Input voltage fret Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol It ransient overvor	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V Itage: 6000V	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltag Maximum rated voltag sarth Measurement method Sampling Frequency band	Probe 1 Probe 1 Probe 2 e to Voltage in CATIII 60 CATII 100 Voltage/c 5 MHz / 1 DC, 0.1 H	inputs inputs inputs inputs input terminal (5 00'; anticipated 00'; anticipated current simultan 8 bits iz to 2 MHz	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage fret Input voltage fret Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol It ransient overvor	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V Itage: 6000V	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization	Probe 1 Probe 2 e to Voltage in CATIII 60 CATII 100 Voltage/c 5 MHz / 1	inputs inputs inputs inputs input terminal (5 00'; anticipated 00'; anticipated current simultan 8 bits iz to 2 MHz	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage fret Input voltage fret Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol It ransient overvor	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) tage: 6000V Itage: 6000V	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization frequency range	Probe 1 Probe 2 Probe 2 Probe 2 e to Voltage in CATIII 60 CATIII 01 Voltage/c 5 MHz / 1 DC, 0.1 Hz to	inputs inputs inputs input terminal (5 00'; anticipated 000'; anticipated current simultan 8 bits 1z to 2 MHz 2 MHz	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 9 Nz ±16 Vez I transient overvol I transient overvol eous digital samp	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 14 tage: 6000V Itage: 6000V Jiling with zero-c	ess) Hz to 1 MHz, (12 t to 5 MHz, 50 V	250 - f) V
Maximum input voltage arth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source.	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 Eto Voltage is CATH 100 Voltage(C) 5 MHz / 1 DC, 0.1 F 0.1 Hz to e U1 to U6, Ext1 to E	inputs inputs inputs inputs input terminal (5 0V; anticipated 10V; anticip	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol transient overvoleous digital sample ded at data update	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 0 ms or Iess) 10 ms or Iess) 11 ms or Iess)	ess) +2 to 1 MHz, (12 to 5 MHz, 50 V	ed calculation
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization frequency range	Probe 1 Probe 1 Probe 2 e to Voltage in CATIII 60 CATIII 10 Voltage in DC, 0.1 H 0.1 Hz to Ett I to U6, Ext I to E Ext I to E Ext I to E The zero	inputs inputs inputs input terminal (5 00'; anticipated 000'; anticipated 1000'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) I transient overvol Litransient overvol Litransie	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 0 ms or Iess) 10 ms or Iess) 11 ms or Iess)	ess) +2 to 1 MHz, (12 to 5 MHz, 50 V	ed calculation
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source	Probe 1 Probe 1 Probe 2 Probe 3 Probe 4 Probe 2 Probe 4 Probe 2 Probe 4 Probe 5 Probe 4 Probe 5 Probe 6 Probe 7 Probe	inputs inputs inputs input terminal (5 00'; anticipated 000'; anticipated 1000'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) I transient overvol Litransient overvol Litransie	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 0 ms or Iess) 10 ms or Iess) 11 ms or Iess)	ess) +2 to 1 MHz, (12 to 5 MHz, 50 V	ed calculation
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 E to Voltage in CATII 100 CATII 101 DC, 0.1 F 0.1 Hz to E U1 to U6, Ext1 to E The zero the stand	inputs inputs inputs inputs input terminal (5 0V; anticipated 10V; anticip	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) I transient overvol Litransient overvol Litransie	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 11 tage: 6000V 12 tage: 6000V 13 per ate), 12 er ate), 14 per ate),	ess) +2 to 1 MHz, (12 to 5 MHz, 50 V	ed calculation
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 E to Voltage in CATII 100 CATII 101 DC, 0.1 F 0.1 Hz to E U1 to U6, Ext1 to E The zero the stand	inputs inputs inputs inputs input terminal (5 00'; anticipated 000'; anticipated current simultan 8 bits 12 to 2 MHz 2 MHz 11 to 16, DC (fix xt2 cross point of t ard for U or I sel o ms / 200 ms ing simple aver	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol transient overvol eous digital sample ded at data update the waveform afte ection.	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 11 tage: 6000V 12 tage: 6000V 13 per ate), 12 er ate), 14 per ate),	ess) +2 to 1 MHz, (12 to 5 MHz, 50 V	ed calculation
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization Frequency range Synchronization source	Probe 1 Probe 1 Probe 2 Probe 3 Probe 4 Probe 3 Probe 4 Probe 3 Probe 4 Probe	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 20'; anticipated 30'; anticipated 30'; anticipated 30'; anticipated 30'; anticipated 40';	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Hz/60 Hz) transient overvol transient overvol transient overvolet was digital sample and the waveform after ection.	peak (10 ms or I quency of 250 kl quency of 1 MHz kHz 10 ms or less) 10 ms or less) 10 ms or less) 11 tage: 6000V 11 tage: 6000V 12 or less) 13 read of the control of the	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V	ed calculation if filter is used a
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization Frequency range Synchronization source	Probe 1 Probe 1 Probe 2 e to Voltage in CATII 100 CATII 101 Voltage in DC, 0.1 H DC, 0.1 H 0.1 Hz to U6 Ext1 to E The zero the stand 10 ms / 5 When us aging iter 500 Hz / 1 Approx. E	inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipated 100	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 0 Ntz/60 Hz) transient overvol It transient overvol eous digital samp	peak (10 ms or Inguency of 250 kl quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 MHz) (Hz quency of 1 ms or less) (10 ms	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V	ed calculation if filter is used a
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization requency range Synchronization source Data update rate	Probe 1 Probe 1 Probe 2 Probe 3 Probe 2 Probe 3 Probe 4 Probe 2 Probe 4 Probe 2 Probe 4 Probe 2 Probe 4 Probe	inputs inputs inputs inputs inputs input terminal (5 00V; anticipated 00V; anticipated corrent simultan 8 bits Iz to 2 MHz 2 MHz	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 1 4 Vpeak V) transient overvol It transient overvol It transient overvoleous digital sample of the Vpeak V I transient overvoleous digital sample overvoleous d	peak (10 ms or Inquency of 250 kl quency of 250 kl quency of 1 MHz kHz (10 ms or Iess) (10 ms	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the	ed calculation si filter is used a number of ave
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization requency range Synchronization source Data update rate	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 Probe 2 Probe 3 Probe 2 Probe 4 Probe	inputs inputs inputs inputs inputs input terminal (5 00V; anticipated 00V; anticipated current simultan 8 bits Iz to 2 MHz 2 MHz	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (* 10 Hz/60 Hz) transient overvol transient overvol transient overvol eous digital sample of the waveform afte ection. 20 kHz / 50 kHz / 10 LPF + digital IIR fiachtage in the sample of the control of th	peak (10 ms or Inquency of 250 kl quency of 250 kl quency of 1 MHz kHz (10 ms or Iess) (10 ms	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the	ed calculation si filter is used a number of ave
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization frequency range	Probe 1 Probe 1 Probe 2 Probe 3 Probe 4 Probe 3 Probe 4 Probe	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 000'; anticipated current simultan 8 bits 1z to 2 MHz 2 MHz 2 MHz -cross point of t ard for U or I sel 0 ms / 200 ms ing simple aver ations. kHz / 5 kHz / 10 00 kHz analog I hen off, add ±0. or frequencies t ero-cross timin, J), current (I), ac	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 8 V, ±15 Vpeak (1 4 V), ±16 Vpeak (1 4 V)	peak (10 ms or I quency of 250 kl quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 ms or less) 10 ms or	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the OFF characteristics of the set freque , reactive power	ed calculation is filter is used a number of ave equivalent) ency. (O), power facts
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization requency range Synchronization source Data update rate LPF Polarity detection volt	Probe 1 Probe 1 Probe 2 Probe 5 Probe 6 Probe 6 Probe 7 Probe 8 Probe 7 Probe 9 Probe	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipated 100'; anticipated 100'; anticipated 100'; anticipated 100'; anticipated 100 kHz 11 to 16, DC (fix 12 to 2 MHz 12 to 2 MHz 13 to 16, DC (fix 14 to 16, DC (fix 15 to 2 MHz 16 to 17 to 15 to 18 to 18 to 19 to	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (* 10 Hz/60 Hz) transient overvol transient overvol transient overvol transient overvol adjust a sample of the waveform after ection. 20 kHz / 50 kHz / 10 LPF + digital IIIR in 3/8 rdg, to the achat are less than g comparison trive power (P), apency (f), efficiency (f), efficie	peak (10 ms or I quency of 250 kl quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 11 tage: 6000V 11 tage: 6000V 12 prate) 12 rate), 13 rate), 14 rate) 15 pdate rate varie 16 kHz / 500 kHz 16 letterworth 17 curracy 18 or equal to 1/10 19 parent power (S) 19 (r(n), loss (Loss), 19 (10 ms)	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the / OFF characteristics of the set freque , reactive power voltage ripple fa	ed calculation siller is used a number of ave equivalent) ency. (O), power facts
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization requency range Synchronization source Data update rate PF	Probe 1 Probe 1 Probe 2 Probe 5 Probe 6 Probe 6 Probe 7 Probe 8 Probe 7 Probe 9 Probe	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 200'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 8 V, ±15 Vpeak (1 4 V), ±16 Vpeak (1 4 V)	peak (10 ms or I quency of 250 kl quency of 250 kl quency of 1 MHz kHz 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 11 tage: 6000V 11 tage: 6000V 12 prate) 12 rate), 13 rate), 14 rate) 15 pdate rate varie 16 kHz / 500 kHz 16 letterworth 17 curracy 18 or equal to 1/10 19 parent power (S) 19 (r(n), loss (Loss), 19 (10 ms)	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the / OFF characteristics of the set freque , reactive power voltage ripple fa	ed calculation siller is used a number of ave equivalent) ency. (O), power facts
Maximum input voltage Maximum rated voltage earth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source Data update rate LPF Polarity detection volt Measurement parame	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 E to Voltage in CATIII 60 CATII 100 Voltage in DC, 0.1 H DC, 0.1 H 0.1 Hz to U6, Ext1 to E The zero the stand 10 ms / 5 When us aging iter 500 Hz / 1 Approx. E Except w Defined 1 Rage Current z ters Voltage (i, k), phase r peak (i, pk)	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (* 10 Hz/60 Hz) transient overvol transient overvol transient overvol transient overvol adjust a sample of the waveform after ection. 20 kHz / 50 kHz / 10 LPF + digital IIIR in 3/8 rdg, to the achat are less than g comparison trive power (P), apency (f), efficiency (f), efficie	peak (10 ms or I quency of 250 kl quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 ms or less) 10 ms or	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the / OFF characteristics of the set freque , reactive power voltage ripple fa	ed calculation si filter is used a number of ave equivalent) ency. (Q), power facts
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization requency range Synchronization source Data update rate PPF Polarity detection volt Measurement parame	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 E to Voltage in CATIII 60 CATII 100 Voltage in DC, 0.1 H DC, 0.1 H 0.1 Hz to U6, Ext1 to E The zero the stand 10 ms / 5 When us aging iter 500 Hz / 1 Approx. E Except w Defined 1 Rage Current z ters Voltage (i, k), phase r peak (i, pk)	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for I above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 4 E) Vpeak (1 8 V, ±15 Vpeak (1 8 Vpe	peak (10 ms or I quency of 250 kl quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 ms or less) 10 ms or	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the / OFF characteristics of the set freque , reactive power voltage ripple fa	ed calculation si filter is used a number of ave equivalent) ency. (Q), power facts
Maximum input voltage Maximum rated voltagearth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source Data update rate LPF Polarity detection volt	Probe 1 Probe 1 Probe 2 Probe 2 Probe 2 Probe 2 Probe 2 Voltage in CATH 100 Voltage in DC, 0.1 Hz 0.1 Hz to 10 Ext1 to E Ext1 to E The zero- the stand 10 ms / 5 / When us aging liter 500 Hz / / Approx. E Except w Defined 1 gge Current z ters Voltage (ip), phase peak (ip),	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Unit for f above: I 5 V, ±12 Vpeak (1 8 V, ±15 Vpeak (2 1 4 V) transient overvol transien	peak (10 ms or I quency of 250 kl quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 MHz (Hz quency of 1 ms or less) 10 ms or	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the / OFF characteristics of the set freque , reactive power voltage ripple fa (WP), voltage pe	ed calculation If filter is used a number of ave equivalent) ency. (O), power facts clor (Urft), currer ak (Upk), currer
Maximum input voltage Maximum rated voltage arth Measurement method Sampling Frequency band Synchronization frequency range Synchronization source Data update rate LPF Polarity detection volt Measurement parame	Probe 1 Probe 1 Probe 2 Probe 3 Probe 4 Probe 3 Probe 4 Probe	inputs inputs inputs inputs inputs input terminal (5 00'; anticipated 100'; anticipa	1 MΩ ±50 kΩ 1000 V, ±2000 V Input voltage free Input voltage free Unit for f above: 1 5 V, ±12 Vpeak (* 10 Hz/60 Hz) transient overvol transient overvol transient overvol transient overvol transient overvol adjusted as the waveform aftee ection. 20 kHz / 50 kHz / 10 LPF + digital IIR finsk fig. 6 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital IIR finsk fig. 7 kHz / 10 LPF + digital II	peak (10 ms or Inquency of 250 kl quency of 250 kl quency of 1 MHz (Hz lo ms or Iess) 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 10 ms or Iess) 11 tage: 6000V 11 tage: 6000V 11 tage: 6000V 11 tage: 6000V 12 tage: 6000V 13 tage: 6000V 13 tage: 6000V 14 tage: 6000V 15 tage: 6000V 15 tage: 6000V 16 tage: 6	ess) Hz to 1 MHz, (12 to 5 MHz, 50 V ross synchroniz h the zero-cross s based on the OFF characteristics of the set freque reactive power voltage ripple fa (WP), voltage pe	ed calculation is filter is used a number of ave equivalent) ency. (Q), power factcor (Urf), currer ak (Upk), currer

Accuracy	Sine wave input with a power factor of 1 or DC input, terminal-to-ground voltage of 0 V, after zero- adjustment
	Within the effective measurement range

	Voltage (U)	Current (I)
DC	±0.02% rdg. ±0.03% f.s.	±0.02% rdg. ±0.03% f.s.
0.1 Hz ≤ f < 30 Hz	±0.1% rdg. ±0.2% f.s.	±0.1% rdg. ±0.2% f.s.
30 Hz ≤ f < 45 Hz	±0.03% rdg. ±0.05% f.s.	±0.03% rdg. ±0.05% f.s.
45 Hz ≤ f ≤ 66 Hz	±0.02% rdg. ±0.02% f.s.	±0.02% rdg. ±0.02% f.s.
66 Hz < f ≤ 1 kHz	±0.03% rdg. ±0.04% f.s.	±0.03% rdg. ±0.04% f.s.
1 kHz < f ≤ 50 kHz	±0.1% rdg. ±0.05% f.s.	±0.1% rdg. ±0.05% f.s.
50 kHz < f ≤ 100 kHz	±0.01×f% rdg. ±0.2% f.s.	±0.01×f% rdg. ±0.2% f.s.
100 kHz < f ≤ 500 kHz	±0.008×f% rdg. ±0.5% f.s.	±0.008×f% rdg. ±0.5% f.s.
500 kHz < f ≤ 1 MHz	±(0.021×f-7)% rdg. ±1% f.s.	±(0.021×f-7)% rdg. ±1% f.s.
Frequency band	2 MHz (-3 dB, typical)	2 MHz (-3 dB, typical)
	Active power (P)	Phase difference
DC	±0.02% rdg. ±0.05% f.s.	-
0.1 Hz ≤ f < 30 Hz	±0.1% rdg. ±0.2% f.s.	±0.1°
30 Hz ≤ f < 45 Hz	±0.03% rdg. ±0.05% f.s.	±0.05°
45 Hz ≤ f ≤ 66 Hz	±0.02% rdg. ±0.03% f.s.	±0.05°
66 Hz < f ≤ 1 kHz	±0.04% rdg. ±0.05% f.s.	±0.05°
1 kHz < f ≤ 10 kHz	±0.15% rdg. ±0.1% f.s.	±0.4°
10 kHz < f ≤ 50 kHz	±0.15% rdg. ±0.1% f.s.	±(0.040×f)°
50 kHz < f ≤ 100 kHz	±0.012×f% rdg. ±0.2% f.s.	±(0.050×f)°
100 kHz < f ≤ 500 kHz	±0.009×f% rdg. ±0.5% f.s.	±(0.055×f)°
500 kHz < f ≤ 1 MHz	±(0.047×f-19)% rdg. ±2% f.s.	±(0.055×f)°
	- barrer lakte	

- Voltage and current DC values are defined for Udc and Idc, while frequencies other than DC are defined for Urms and Irms.

- DC are defined for Urms and Irms.

 When U or I is selected as the synchronization source, accuracy is defined for source input of at least 5% f.s.

 The phase difference is defined for a power factor of zero during f.s. input.

 Add the current sensor accuracy to the above accuracy figures for current, active power, and phase difference.

 For the 6 V range, add e.0.5% f.s. for voltage and active power.

- For the 6 V range, add $\pm 0.05\%$ f.s. for voltage and active power. Add ± 20 µV to the DC accuracy for current and active power when using Probe 1 (however, 2 V f.s.).
 Add $\pm 0.05\%$ rdg. $\pm 0.2\%$ f.s. for current and active power when using Probe 2, and add $\pm 0.2\%$ to the phase at or above 10 kHz.
 The accuracy figures for voltage, current, active power, and phase difference for 0.1 Hz to 10 Hz are reference values.
 The accuracy figures for voltage, active power, and phase difference in excess of 220 V from 10 Hz to 16 Hz are reference values.
 The accuracy figures for voltage, active power, and phase difference in excess of 750 V for values of f such that 30 kHz < ± 10 Mtz are reference values.
 The accuracy figures for voltage, active power, and phase difference in excess of (2000ff (kHz) V for values of f such that 100 kHz < ± 10 Mtz are reference values.
 Add $\pm 0.02\%$ rdg. for voltage and active power at or above 1000 V (however, figures are reference values).
- Even for input voltages that are less than 1000 V, the effect will persist until the input resistance temperature falls.
- For voltages in excess of 600 V, add the following to the phase difference accuracy:
 -500 Hz < 1 ≤ 5 kHz: ±0.3°

 -504 Hz < 1 ≤ 0 kHz: ±0.5°

 -20 Hz < 1 ≤ 200 kHz: ±1°

Measurement parameters	Accuracy		
Apparent power	Voltage accuracy + current accuracy ±10 dgt.		
Reactive power	Apparent power accuracy + $(\sqrt{2.69 \times 10^{-4} \text{xf}} + 1.0022 - \lambda^2 - \sqrt{1 - \lambda^2}) \times 100\% \text{ f.s.}$		
Power factor	φ of other than ±90°: ± 1 - cos (φ + phase difference accuracy) v of ±90°: φ of ±90°: cos (φ + phase difference accuracy) × 100% rdg. ± 50 dgt.		
Waveform peak	Voltage/current RMS accuracy ±1% f.s. (f.s.: apply 300% of range)		

Effects of temperature and humidity

Add the following to the voltage, current, and active power accuracy within the range of 0°C to 20°C or 26°C to 40°C: ±0.01% rdg./°C (add 0.01% f.s./°C (add 0.05% f.s./°C to f.s./°C (add 0.05% f.s./°C to f.s./°C (add 0.05% f.s./°C to f.s./°C (add 0.05% f.s./°C)

DC measured values)

Under conditions of 60% RH or greater:

 $\label{eq:Add} \begin{array}{l} \mbox{Add} \pm 0.0006 \times \mbox{humidity} \ [\%RH] \times f \ [kHz]\% \ rdg. \ to the voltage and active power accuracy. \\ \mbox{Add} \pm 0.0006 \times \mbox{humidity} \ [\%RH] \times f \ [kHz]\% \ for the phase difference. \\ \end{array}$

Effects of common-mod voltage

50 Hz/60 Hz 100 dB or greater (when applied between the voltage input terminals and the enclosure)

100 kHz 80 dB or greater (reference value)
Defined for CMRR when the maximum input voltage is applied for all measurement

±cos (φ + phase difference accuracy) × 100% f.s.

Effects of external magnetic fields

±1% f.s. or less (in a magnetic field of 400 A/m, DC or 50 Hz/60 Hz)

Effects of power factor

 $\pm \left(1 - \frac{\cos(\phi + \text{phase difference acc})}{\cos(\phi)}\right)$ ×100% rdg. Φ of other than ±90°:

Frequency measurement

φ of ±90°:

Number of measurement channels	Max. 6 channels (f1 to f6), based on the number of input channels
Measurement source	Select from U/I for each connection.
Measurement method	Reciprocal method + zero-cross sampling value correction
	Calculated from the zero-cross point of waveforms after application of the zero-cross filter.
Measurement range	0.1 Hz to 2 MHz (Display shows 0.00000 Hz or Hz if measurement is not possible.)
Accuracy	±0.05% rdg. ±1 dgt. (with a sine wave that is at least 30% of the measurement source's measurement range)
Display format	0.10000 Hz to 9.99999 Hz, 9.9000 Hz to 99.9999 Hz,
	99.000 Hz to 999.999 Hz, 0.99000 kHz to 9.99999 kHz,
	9.9000 kHz to 99.9999 kHz, 99.000 kHz to 999.999 kHz,
	0.99000 MHz to 2.00000 MHz

Integration measurement

Measurement modes	Select RMS	or DC for each connection (DC mode can only be selected when using an	
	AC/DC sensor with a 1P2W connection).		
Measurement parameters	Current integration (lh+, lh-, lh), active power integration (WP+, WP-, WP) lh+ and lh- are measured only in DC mode. Only lh is measured in RMS mode.		
Measurement method	Digital calcu	ulation based on current and active power values	
	DC mode	Every sampling interval, current values and instantaneous power values are integrated separately for each polarity.	
	RMS mode	The current RMS value and active power value are integrated for each measurement interval. Only active power is integrated separately for each polarity.	
Display resolution	999999 (6 digits + decimal point), starting from the resolution at which 1% of each range is f.s.		
Measurement range	0 to ±9999.9	0 to ±9999.99 TAh/TWh	
Integration time	10 sec. to 9	10 sec. to 9999 hr. 59 min. 59 sec.	
Integration time accuracy	±0.02% rdg	±0.02% rdg. (0°C to 40°C)	
Integration accuracy	±(current or	active power accuracy) ±integration time accuracy	
Backup function	None		

Harmonics measurement

Number of measurement	Max. 6 channels, based on the number of built-in channels
channels	
Synchronization source	Based on the synchronization source setting for each connection.
Measurement modes	Select from IEC standard mode or wideband mode (setting applies to all channels).
Measurement parameters	Harmonic voltage RMS value, harmonic voltage content percentage, harmonic voltage phase angle, harmonic current RMS value, harmonic current chare percentage, harmonic current phase angle, harmonic active power, harmonic power content percentage, harmonic voltage/current phase difference, total harmonic voltage distortion, total harmonic current distortion, voltage unbalance rate, current unbalance rate (no intermediate harmonic parameters in IEC standard mode)
FFT processing word	32 bits
length	
Antialiasing	Digital filter (automatically configured based on synchronization frequency)
Window function	Rectangular
Grouping	OFF / Type 1 (harmonic sub-group) / Type 2 (harmonic group)
THD calculation method	THD_F / THD_R (Setting applies to all connections.) Select calculation order from 2nd
	order to 100th order
	(however, limited to the maximum analysis order for each mode).

(1) IEC standard mode

` '	
Measurement method	Zero-cross synchronization calculation method (same window for each synchronization source) Fixed sampling interpolation calculation method with average thinning in window
	IEC 61000-4-7:2002 compliant with gap overlap
Synchronization	45 Hz to 66 Hz
frequency range	
Data update rate	Fixed at 200 ms.
Analysis orders	0th to 50th
Window wave number	When less than 56 Hz, 10 waves; when 56 Hz or greater, 12 waves
Number of FFT points	4096 points

Frequency Harmonic voltage Harmonic power Phase difference and current ±0.1% rdg. ±0.1% f.s. DC (0th order) ±0.1% rdg. ±0.2% f.s. 45 Hz ≤ f ≤ 66 Hz ±0.2% rdg. ±0.04% f.s. ±0.4% rdg. ±0.05% f.s. ±0.08° 66 Hz < f ≤ 440 Hz ±0.5% rdg. ±0.05% f.s. ±1.0% rdg. ±0.05% f.s. ±0.089 ±0.8% rdg. ±0.05% f.s. ±2.4% rdg. ±0.05% f.s. ±1.5% rdg. ±0.05% f.s. ±4% rdg. ±0.05% f.s. ±0.4° ±0.4° 440 Hz < f ≤ 1 kHz 1 kHz < f ≤ 2.5 kHz 2.5 kHz < f ≤ 3.3 kHz ±6% rdg. ±0.05% f.s. ±10% rdg. ±0.05% f.s.

Power is defined for a power factor of 1.

Fower is defined for a power factor or 1.

Accuracy specifications are defined for fundamental wave input that is greater than or equal to 50% of the range.

Add the current sensor accuracy to the above accuracy figures for current, active power, and phase difference.

Add ±0.02% rdg. for voltage and active power at or above 1000 V (however, figures are reference values).

Even for input voltages that are less than 1000 V, the effect will persist until the input resistance temperature falls.

(2) Wideband mode

Measurement method	Zero-cross synchronization calculation method (same window for each synchronization			
	source) with gaps			
	Fixed sampling interpolation calculation method			
Synchronization	0.1 Hz to 300 kHz			
frequency range				
Data update rate	Fixed at 50 ms.			
Maximum analysis order and	Frequency	Window wave number	Maximum analysis order	
Window wave number	0.1 Hz ≤ f < 80 Hz	1	100th	
	80 Hz ≤ f < 160 Hz	2	100th	
	160 Hz ≤ f < 320 Hz	4	60th	
	320 Hz ≤ f < 640 Hz	2	60th	
	640 Hz ≤ f < 6 kHz	4	50th	
	6 kHz ≤ f < 12 kHz	2	50th	
	12 kHz ≤ f < 25 kHz	4	50th	
	25 kHz ≤ f < 50 kHz	8	30th	
	50 kHz ≤ f < 101 kHz	16	15th	
	101 kHz ≤ f < 201 kHz	32	7th	
	201 kHz ≤ f < 300 kHz 64 5th			
Phase zero-adjustment	The instrument provides phase zero-adjustment functionality using keys or communications commands (only available when the synchronization source is set to Ext).			
Accuracy	Add the following to the accuracy figures for voltage (U), current (I), active power (P), and phase difference. (Unit for f in following table: kHz)			

Frequency	Harmonic voltage and current	Harmonic power	Phase difference
DC	±0.1% f.s.	±0.2% f.s.	-
0.1 Hz ≤ f < 30 Hz	±0.05% f.s.	±0.05% f.s.	±0.1°
30 Hz ≤ f < 45 Hz	±0.1% f.s.	±0.2% f.s.	±0.1°
45 Hz ≤ f ≤ 66 Hz	±0.05% f.s.	±0.1% f.s.	±0.1°
66 Hz < f ≤ 1 kHz	±0.05% f.s.	±0.1% f.s.	±0.1°
1 kHz < f ≤ 10 kHz	±0.05% f.s.	±0.1% f.s.	±0.6°
10 kHz < f ≤ 50 kHz	±0.2% f.s.	±0.4% f.s.	±(0.020×f)° ±0.5°
50 kHz < f ≤ 100 kHz	±0.4% f.s.	±0.5% f.s.	±(0.020×f)° ±1°
100 kHz < f ≤ 500 kHz	±1% f.s.	±2% f.s.	±(0.030×f)° ±1.5°
500 kHz < f ≤ 900 kHz	±4% f.s.	±5% f.s.	±(0.030×f)° ±2°

UNITY ±4% 1.8. ±5% 18. ½(U.030x1)* ½2° 17. The figures for voltage, current, power, and phase difference for frequencies in excess of 300 kHz are reference values.

When the fundamental wave is outside the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference for frequencies other than the fundamental wave are reference values.

When the fundamental wave is within the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference in excess of 6 kHz are reference values.

Accuracy values for phase difference are defined for input for which the voltage and current for the same order are at least 10% 16.

current for the same order are at least 10% f.s.

Waveform recording

Number of measurement channels	Voltage and current waveforms	Max. 6 channels (based on the number of installed channels)	
	Motor waveforms *	Max. 2 analog DC channels + max. 4 pulse channels	
Recording capacity	1 Mword x ((voltage + cu	rrent) x number of channels + motor waveforms *)	
Waveform resolution	16 bits (Voltage and curr	ent waveforms use the upper 16 bits of the 18-bit A/D.)	
Sampling speed	Voltage and current waveforms	Always 5 MS/s	
	Motor waveforms *	Always 50 kS/s	
	Motor pulse *	Always 5 MS/s	
Compression ratio	1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, 1/200, 1/500		
	(5 MS/s, 2.5 MS/s, 1 MS/s, 500 kS/s, 250 kS/s, 100 kS/s, 50 kS/s, 25 kS/s, 10 kS/s)		
	However, motor waveforms* are only compressed at 50 kS/s or less.		
Recording length	1 kWord / 5 kWord / 10 kWord / 50 kWord / 100 kWord / 500 kWord / 1 Mword		
Storage mode	Peak-to-peak compressi	on or simple thinning	

Trigger mode	SINGLE or NORMAL (with forcible trigger setting)
Pre-trigger	0% to 100% of the recording length, in 10% steps
Trigger source	Voltage and current waveform, waveform after voltage and current zero-cross filter manual, motor waveform*, motor pulse*
Trigger slope	Rising edge, falling edge
Trigger level	+300% of the range for the waveform, in 0.1% steps

*Motor waveform and motor pulse: Motor analysis and D/A-equipped models only

Motor analysis (PW6001-11 to -16 only)

-		
Number of input channels	4 channels	
	CH A Analog DC input / Frequency input / Pulse input	
	CH B Analog DC input / Frequency input / Pulse input	
	CH C Pulse input	
	CH D Pulse input	
Operating mode	Single, dual, or independent input	
Input terminal profile	Isolated BNC connectors	
Input resistance (DC)	1 MΩ ±50 kΩ	
Input method	Function-isolated input and single-end input	
Measurement parameters	Voltage, torque, rpm, frequency, slip, motor power	
Maximum input voltage	±20 V (analog DC and pulse operation)	
Additional conditions for guaranteed accuracy	Input: Terminal-to-ground voltage of 0 V, after zero-adjustment	

(1) Analog DC input (CH A/CH B)

Measurement range	±1 V / ±5 V / ±10 V	
Effective input range	1% to 110% f.s.	
Sampling	50 kHz, 16 bits	
Response speed	0.2 ms (when LPF is OFF)	
Measurement method	Simultaneous digital sampling, zero-cross synchronization calculation method (averaging between zero-crosses)	
Measurement accuracy	±0.05% rdg. ±0.05% f.s.	
Temperature coefficient	±0.03% f.s./°C	
Effects of common- mode voltage	$\pm 0.01\%$ f.s. or less with 50 V applied between the input terminals and the enclosure (DC / 50 Hz / 60 Hz)	
LPF	OFF (20 kHz) / ON (1 kHz)	
Display range	From the range's zero-suppression range setting to ±150%	
Zero-adjustment	Voltage ±10% f.s., zero-correction of input offsets that are less	

(2) Frequency input (CH A/CH B)

Detection level	Low: 0.5 V or less; high: 2.0 V or more
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)
Minimum detection width	0.5 µs or more
Measurement accuracy	±0.05% rdg. ±3 dgt.
Display range	1.000 kHz to 500.000 kHz

(3) Pulse input (CH A / CH B / CH C / CH D)

Detection level	Low: 0.5 V or less; high: 2.0 V or more	
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio) 0.5 \(\mu \)s or more	
Minimum detection width		
Pulse filter	OFF/ Weak / Strong (When using the weak setting, positive and negative pulses of less than $0.5~\mu s$ are ignored. When using the strong setting, positive and negative pulses of $5~\mu s$ are ignored.)	
Measurement accuracy	±0.05% rdg. ±3 dgt.	
Display range	0.1 Hz to 800.000 kHz	
Unit	Hz / r/min.	
Frequency division setting range	1~60000	
Rotation direction detection	Can be set in single mode (detected based on lead/lag of CH B and CH C).	
Mechanical angle origin detection	Can be set in single mode (CH B frequency division cleared at CH D rising edge).	

D/A output (PW6001-11 to -16 only)

Number of output channels	20 channels		
Output terminal profile	D-sub 25-pin connector x 1		
Output details	- Switchable between waveform output and analog output (select from bar measurement parameters). - Waveform output is fixed to CH1 to CH12.		
D/A conversion resolution	16 bits (polarity + 15 b	oits)	
Output refresh rate	Analog output Waveform output	10 ms / 50 ms / 200 ms (based on data update rate for the selected parameter) 1 MHz	
Output voltage	Analog output Waveform output	±5 V DC f.s. (max. approx. ±12 V DC) Switchable between ±2 V f.s. and ±1 V f.s., crest factor of 2.5 or greater Setting applies to all channels.	
Output resistance	100 Ω ±5 Ω		
Output accuracy	Analog output	Output measurement parameter measurement accuracy ±0.2% f.s. (DC level)	
	Waveform output	Measurement accuracy $\pm 0.5\%$ f.s. (at ± 2 V f.s.) or $\pm 1.0\%$ f.s. (at ± 1 V f.s.) (RMS value level, up to 50 kHz)	
Temperature coefficient	±0.05% f.s./°C		

Display section

Display characters	English / Japanese / Chinese (simplified, available soon)	
Display	9" WVGA TFT color LCD (800 × 480 dots) with an LED backlight and analog resistive touch panel 999999 count (including integration values)	
Display value resolution		
Display refresh rate	Measured values	Approx. 200 ms (independent of internal data update rate) When using simple averaging, the data update rate varies based on the number of averaging iterations.
	Waveforms	Based on display settings

External interface

(1) USB flash drive interface

Connector	USB Type A connector x 1
Electrical	USB 2.0 (high-speed)
specifications	
Power supplied	Max. 500 mA
Supported USB flash drives	USB Mass Storage Class compatible
Recorded data	- Save/load settings files - Save measured values/automatic recorded data (CSV format) - Copy measured values/recorded data (from internal memory) - Save waveform data, save screenshots (compressed BMP format)

(2) LAN interface

Connector	RJ-45 connector x 1
Electrical specifications	IEEE 802.3 compliant
Transmission method	10Base-T / 100Base-TX / 1000Base-T (automatic detection)
Protocol	TCP/IP (with DHCP function)
Functions	dedicated port (data transfers, command control)

(3) GP-IB interface

	Communication method	IEEE 488.1 1987 compliant developed with reference to IEEE 488.2 1987 Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0
	Addresses	00 to 30
	Functions	Command control

(4) RS-232C interface

Connector	D-sub 9-pin connector x 1, 9-pin power supply compatible, also used for external control
Communication method	RS-232C, EIA RS-232D, CCITT V.24, and JIS X5101 compliant Full duplex, start stop synchronization, data length of 8, no parity, 1 stop bit
Flow control	Hardware flow control ON/OFF
Communications speed	9,600 bps / 19,200 bps / 38,400 bps / 57,600 bps / 115,200 bps / 230,400 bps
Functions	Command control Used through exclusive switching with external control interface

(5) External control interface

Connector	D-sub 9-pin connector x 1, 9-pin power supply compatible, also used for RS-232C
Power supplied	OFF/ON (voltage of +5 V, max. 200 mA)
Electrical specifications	0/5 V (2.5 V to 5 V) logic signals or contact signal with terminal shorted or open
Functions	Same operation as the [START/STOP] key or the [DATA RESET] key on the control panel Used through exclusive switching with RS-232C

(6) Two-instrument synchronization interface

Connector	SFP optical transceiver, Duplex-LC (2-wire LC)
Optical signal	850 nm VCSEL, 1 Gbps
Laser class	Class 1
Fiber used	50/125 µm multi-mode fiber equivalent, up to 500 m
Functions	Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results.

Functional Specifications

Auto-range function

Functions	The voltage and current ranges for each connection are automatically changed in response to the input.
Operating mode	OFF/ON (selectable for each connection)
Auto-range breadth	Broad/narrow (applies to all channels)
	Broad The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 110% s.s. The range is lowered by two if all RMS values for the connection are less than or equal to 10% f.s. (However, the range is not lowered if the peak value would be exceeded with the lower range.)
	Narrow The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 105% f.s. The range is lowered by one if all RMS values for the connection are less than or equal to 40% f.s. (However, the range is not lowered if the peak value would be exceeded with the lower range.) When ΔY conversion is enabled, the range reduction is determined by multiplying the range by $\frac{1}{\sqrt{2}}$.

Time control function

Timer control	OFF, 10 sec. to 9999 hr. 59 min. 59 sec. (in 1 sec. steps)
Actual time control	OFF, start time/stop time (in 1 min. steps)
Intervals	OFF / 10 ms / 50 ms / 200 ms / 500 ms / 1 sec. / 5 sec. / 10 sec. / 15 sec. / 30 sec.

Hold functionality

F	Hold	Stops updating the display with all measured values and holds the value currently being displayed. Used exclusively with the peak hold function.
F	Peak hold	Updates the measured value display each time a new maximum value is set. Used exclusively with the hold function.

Calculation functionality

(1) Rectifier

Functions	Selects the voltage and current values used to calculate apparent and reactive power and power factor.
Operating mode	RMS/mean (Can be selected for each connection's voltage and current.)

(2) Scaling

VT (PT) ratio	OFF/ 0.01 to 9999.99
CT ratio	OFF/ 0.01 to 9999.99

(3) Averaging (AVG)

Functions	All instantaneous measured values, including harmonics, are averaged.									
Operating mode	OFF / Simple averaging / Exponential averaging									
Operation	averaging	Averaging is performed for the number of simple averaging iterations for each data update cycle, and the output data is updated. The data update rate is lengthened by the number of averaging iterations.								
					averaged u e exponenti					
	During averaging	operat	ion, a	averaged da	ata is used f	or a	ll analog	output	and	save data.
Number of simple averaging iterations	Number of avera		g	5	10		20	50		100
	Data update rate	10 n	ns	50 ms	100 ms	2	:00 ms	500 m	IS	1 sec.
		50 n	ns	250 ms	500 ms	1	sec.	2.5 se	c.	5 sec.
		200 1	ms	1 sec.	2 sec.	4	sec.	10 sec. 20		20 sec.
Exponential averaging		Setting			FAST		MID			SLOW
response rate				10 ms	0.1 sec.		0.8 sec.			5 sec.
	Data			50 ms	0.5 sec.		4 sec.			25 sec.
	update rate			200 ms	2.0 sec.	2.0 sec. 16		sec.		100 sec.
	These values indic		time	required for					_	

(4) Efficiency and loss calculations

Calculated items	Active power value (P), fundamental wave active power (Pfnd), and motor power (Pm) (Motor analysis and D/A-equipped models only) for each channel and connection
Number of calculations that can be performed	Four each for efficiency and loss
Formula	Calculated items are specified for Pin(n) and Pout(n) in the following format: Pin = Pin1 + Pin2 + Pin3 + Pin4, Pout = Pout1 + Pout2 + Pout3 + Pout4 IP = 100 × Pout1 Loss = IPinI-IPout1

(5) Power formula selection

Functions	Selects the re	reactive power, power factor, and power phase angle formulas.				
Formula	TYPE1 / TYPE2 / TYPE3					
	TYPE1	Compatible with TYPE1 as used by the Hioki 3193 and 3390.				
	TYPE2	Compatible with TYPE2 as used by the Hioki 3192 and 3193.				
	TYPE3	The sign of the TYPE1 power factor and power phase angle are used as				
		the active power signs.				

(6) Delta conversion

Functions	Δ-Υ Υ-Δ	When using a 3P3W3M or 3V3A connection, converts the line voltage waveform to a phase voltage waveform using a virtual neutral point. When using a 3P4W connection, converts the phase voltage waveform to a line voltage waveform.
		S values and all voltage parameters, including harmonics, are calculated st-conversion voltage.

(7) Current sensor phase shift calculation

Functions	Corrects the current	Corrects the current sensor's harmonic phase characteristics using calculations.				
Correction value	Correction points are	Correction points are set using the frequency and phase difference.				
settings	Frequency Phase difference	0.1 kHz to 999.9 kHz (in 0.1 kHz steps) 0.0 deg. to ±90.0 deg. (in 0.1 deg. steps)				
	However, the time of	lifference calculated from the frequency's phase difference is subject of 50 us				

Display functionality

(1) Connection confirmation screen

()	
Functions	Displays a connection diagram and voltage and current vectors based on the selected measurement lines. The ranges for a correct connection are displayed on the vector display so that the connection can be checked.
Mode at startup	User can select to display the connection confirmation screen at startup (startup screen setting).
Simple settings	Commercial power supply / Commercial power supply high-resolution HD / DC / DC high-resolution HD / PWM / High-frequency / Other

(2) Vector display screen

Functions	Displays a connection-specific vector graph along with associated level values and phase
	angles.

(3) Numerical display screen

Functions	Displays power channels.	er measured values and motor measured values for up to six instrument
Display patterns	Basic by connection Selection display	Displays measured values for the measurement lines and motors combined in the connection. There are four measurement line patterns: U, I, P, and Integ. Creates a numerical display for the measurement parameters that the user has selected from all basic measurement parameters in the location selected by the user. There are 4-, 8-, 16-, and 32-display patterns.

(4) Harmonic display screen

Functions	Displays harmonic measured values on the instrument's screen.
Display patterns	Display bar graph: Displays harmonic measurement parameters for user-specified channels as a bar graph. Display list: Displays numerical values for user-specified parameters and user-specified channels.

(5) Waveform display screen

Functions	Displays the voltage and current waveforms and motor waveform.
Display patterns	All-waveform display, waveform + numerical display

Automatic save function

Functions	Saves the specified measured values in effect for each interval.
Save destination	OFF / Internal memory / USB flash drive
Saved parameters	User-selected from all measured values, including harmonic measured values
Maximum amount of saved data	Internal memory 64 MB (data for approx. 1800 measurements) USB flash drive Approx. 100 MB per file (automatically segmented) x 20 files
Data format	CSV file format

Manual save function

(1) Measurement data

Functions	The [SAVE] key saves specified measured values at the time it is pressed. Comment text can be entered for each saved data point, up to a maximum of 20 alphanumeric characters. **The manual save function for measurement data cannot be used while automatic save is in progress.
Save destination	USB flash drive
Saved parameters	User-selected from all measured values, including harmonic measured values
Data format	CSV file format

(2) Waveform data

Functions	A button on the touch screen saves waveform data at the time it is pressed.	
	Comment text can be entered for each saved data point, up to a maximum of 40 alphanumeric characters.	
	*The manual save function for measurement data cannot be used while automatic saving	
	is in progress.	
Save destination	USB flash drive	
Data format	CSV file format	

(3) Screenshots

Functions	The [COPY] key saves a screenshot to the save destination. *This function can be used at an interval of 1 sec or more while automatic saving is in progress.
Save destination	USB flash drive
Comment entry	OFF / Text / Handwritten When set to [Text], up to 40 alphanumeric characters When set to [Handwritten], hand-drawn images are pasted to the screen.
Data format	Compressed BMP

(4) Settings data

Functions	Saves settings information to the save destination as a settings file via functionality provided on the File screen. In addition, previously saved settings files can be loaded and their settings restored on the File screen. However, language and communications settings are not saved.
Save destination	USB flash drive

Two-instrument synchronization function

Functions		slave instrument to the master instrument, which
	performs calculations and displays	
	with up to 12 channels.	e, the master instrument operates as a power meter
		, the master instrument operates while synchronizing
	up to three channels from the slave	
Operating mode	OFF / Numerical synchronization / \	Waveform synchronization
		be selected when the data update rate is 10 ms.
		lave instruments, waveform synchronization operates
	only when there are 3 or more chan	neis.
Synchronized items	Numerical synchronization mode	Data update timing, start/stop/data reset
	Waveform synchronization mode	Voltage/current sampling timing
Synchronization delay	Numerical synchronization mode	Max. 20 μs
	Waveform synchronization mode	Up to 5 samples
Transfer items	Numerical synchronization mode	Basic measurement parameters for up to six
		channels (including motor data)
	Waveform synchronization mode	Voltage/current sampling waveforms for up to three channels (not including motor data). However, the maximum number of channels is limited to a total
		of six, including the master instrument's channels.

Other functions

Clock function	Auto-calendar, automatic leap year detection, 24-hour clock
Actual time accuracy	When the instrument is on, ±100 ppm; when the instrument is off, within ±3 sec./day (25°C)
Sensor identification	Current sensors connected to Probe1 are automatically detected.
Zero-adjustment function	After the AC/DC current sensor's DEMAG signal is sent, zero-correction of the voltage and current input offsets is performed.
Touch screen correction	Position calibration is performed for the touch screen.
Key lock	While the key lock is engaged, the key lock icon is displayed on the screen.

General Specifications

Operating environment	Indoors at an elevation of up to 2000 m in a Pollution Level 2 environment
Storage temperature and humidity	-10°C to 50°C, 80% RH or less (no condensation)
Operating temperature and humidity	0°C to 40°C, 80% RH or less (no condensation)
Dielectric strength	50 Hz/60 Hz 5.4 kVrms AC for 1 min. (sensed current of 1 mA) Between voltage input terminals and instrument enclosure, and between current sensor input terminals and interfaces 1 kVrms AC for 1 min. (sensed current of 3 mA) Between motor input terminals (Ch. A, Ch. B, Ch. C, and Ch. D) and the instrument enclosure
Standards	Safety EN61010 EMC EN61326 Class A, EN61000-3-2, EN61000-3-3
Rated supply voltage	100 V AC to 240 V AC, 50 Hz/ 60 Hz
Maximum rated power	200 VA
External dimensions	Approx. 430 (W) × 177 (H) × 450 (D) mm (excluding protruding parts)
Mass	Approx. 14 kg ±0.5 kg (PW6001-16)
Backup battery life	Approx. 10 years (reference value at 23°C) (lithium battery that stores time and setting conditions)
Product warranty period	1 year
Guaranteed accuracy period	6 months (1-year accuracy = 6-month accuracy × 1.5)
Accuracy guarantee conditions	Accuracy guarantee temperature and humidity range: 23°C ±3°C, 80% RH or less Warm-up time: 30 min. or more
Accessories	Instruction manual x 1, power cord x 1 D-sub 25-pin connector x 1 (PW6001-1x only)

Formulae

Basic formula

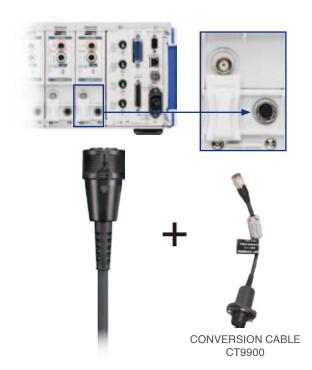
Wiring	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W
Voltage, current	Xrms(i)=	Xrms(i)(i+1) =	$Xrms123 = \frac{1}{3} (\lambda$	Krms1+ Xrms2+	Xrms3)
RMS value actual RMS value)	$\sqrt{\frac{1}{M}}\sum_{S=0}^{M-1} (X(i)s)^2$	$\frac{1}{2}$ ($Xrms(i) + Xrms(i+1)$)		$Xrms456 = \frac{1}{3} (X$		
Voltage, current Mean value	Xmn(i) =	Xmn(i)(i+1) =		$X_{mn123} = \frac{1}{3}(X_{mn123} + X_{mn123} + X_{mn123$	mn1+ Xmn2+ 2	(mn3)
rectification RMS equivalent	$\frac{\pi}{2\sqrt{2}} \frac{1}{M} \sum_{s=0}^{M-1} X(i)s $	1/2 (Xmn(i)	+Xmn(i+1))	$Xmn456 = \frac{1}{3}(X$	mn4+ Xmn5+ X	(mn6)
Voltage, current AC component		>	$X_{ac(i)} = \sqrt{(X_{rms(i)})}$) 2 - (Xdc(i)) 2		
Voltage, current Average value	$Xdc(t) = \frac{1}{M} \sum_{n=0}^{M-1} X(t)$ s					
Voltage, current Fundamental vave component	$X1_{(i)}$ for harmonic voltage and current in the harmonic formula					
Voltage and current peak values				ax. value for M items n. value for M items		
	P(i) =			P123=P1+P2	P123 = P1	+P2+P3
Active power	$\frac{1}{M} \sum_{S=0}^{M-1} (U(i)s \times I(i)s)$	P(i)(i+1) =	P(i)+P(i+1)	P456=P4+P5	P456 = P4	+P5+P6
	When connecting 3P3W3 When connecting 3V3A.	use line-to-line voltage for	or voltage U(i). (The same	form $u(i)s$. 3P3W3M: $u_{is} = (U_{is} - U_{is} - U_{is})$ e formula is used for 3P3W2M and g power consumption $(+P)$ and pow	3V3A.)	$u_{ls} = (U_{ls} - U_{2s})/3$
		S(i)(i+1)	S(i)(i+1)=	$S_{123} = \frac{\sqrt{3}}{2} (S_1 + S_2 + S_3)$	S123 = S1	+S2+S3
Apparent power	$S(i) = U(i) \times I(i)$	=S(i)+S(i+1)	$\frac{\sqrt{3}}{2}(S(i)+S(i+1))$	$S456 = \frac{3}{3}(S4 + S5 + S6)$	S456 = S4	
чррагент рожег	Select rms / mn for U ₀ and When connecting 3P3W3N When connecting 3V3A, us	I _(i) . I and 3P4W, use phase was line-to-line voltage for	oltage for voltage $U_{\bar{m}}$. voltage $U_{\bar{m}}$.	<u> </u>		
	When selecting formula type 1 and type 3					
	Q(i) =	O(0(i,t) =	O(1)+O(1,1)	Q123=Q1+Q2	Q123=Q1	+Q2+Q3
	si(i)√S(i) ² -P(i) ²	Q(i)(i+1) = Q(i)+Q(i+1)		Q456=Q4+Q5	Q456=Q4	+Q5+Q6
	When selecting formula type 2 $Q(i) = Q(i)(i+1) = Q_{123} = \sqrt{S_{123}^2 - P_{123}^2}.$					
Reactive power	Q(i) =		i+1) =			,
	$\sqrt{S(i)^2 - P(i)^2}$ - The polarity sign si for react	$\sqrt{S(i)(i+1)^2}$			S456 ² -P456 ²	AG) and f-1 indic
	The polarity signs for mactive power Q for formula type 1 and type 3 indicates leading and larging polarity, [None] indicates leaguing polarity (LAG), and [-] indicates leading polarity (LAG). For polarity sign si_0 , lead and lag for voltage waveform Li_0 and current waveform Li_0 are exquired for each measurement channel (i) The connecting PEWMM and JPEW, use phase voltage for voltage waveform U_0 . 3PSWMM: $a_0 = (Li_0 - U_0)/3$, $a_0 = (U_0 - U_0)/3$, $a_0 = (U_0 - U_0)/3$, $a_0 = (U_0 - U_0)/3$. There is no polarity signs when formula by a_0 ? Is selected.					
			When selecting	g formula type 1		
	$\lambda_{(i)} = Si_{(i)} \left \frac{P_{(i)}}{S_{(i)}} \right $	$\lambda_{(i)(i+1)} = Si$	$(i)(i+1)$ $\frac{P(i)(i+1)}{S(i)(i+1)}$	λ123 =Si123 P12	$\frac{ 3 }{ 3 }$, $\lambda_{456} = S$	i456 <u>P456</u> S456
				formula type 2		
	$\lambda(i) = \left \frac{P(i)}{S(i)} \right $	λ(i)(i+1) :	$= \left \frac{P(i)(i+1)}{S(i)(i+1)} \right $	$\lambda_{123} = \frac{P_{12}}{S_{12}}$	$\frac{23}{23}$ $\lambda_{456} = \frac{P}{S}$	456 456
Power factor				formula type 3		
	$\lambda^{(i)} = \frac{P^{(i)}}{S^{(i)}}$	λ (i)(i+1,	$=\frac{P(i)(i+1)}{S(i)(i+1)}$	$\lambda_{123} = \frac{P_{12}}{S_{12}}$	$\frac{23}{23}$, $\lambda_{456} = \frac{P}{S}$	456 456
	The polarity sign is for power factor & for formula type 1 indicates leading and lagging polarity, [None] indicates lagging polarity [LAG], and [-] indicates leading polarity [LAG]. For polarity sign sis, lead and lag for voltage waveform Uni and current waveform I(i)) are acquired for each measurement channel (i) sis, sis, and siso are acquired from the upsing for \(\to					
	- For formula type 1, the polarity sign for active power P is used. When selecting formula type 1					
Power phase angle				d -si cos:11 2		000-1 2
	ϕ_0 : si_0 : $cos^{-1} \lambda_0 \phi_0$ (i_1 +1) = si_0 (i_1 +1) $cos^{-1} \lambda_0$ (i_2 +1) ϕ_{123} = si_{123} cos ⁻¹ $\lambda_{123} $, ϕ_{456} = si_{456} cos ⁻¹ $\lambda_{456} $. When selecting formula type 2					
	$\phi_{(i)} = \cos^{-1} \lambda_{(i)} $		os-1 _{A(i)(i+1)}	$\phi_{123} = \cos^{-1} \lambda_{12} $	and dura = Co	ne-1 14.cd
	$\psi_{(i)} = \cos \chi_{(i)} $ When selecting for			Ψ123 = COS Λ1:	ε3» Ψ456 = C0	~ 1 <i>7\456</i> l
	$\phi_{(i)} = \cos^{-1} \lambda_{(i)}$		cos ⁻¹ $\lambda_{(i)(i+1)}$	$\phi_{123} = \cos^{-1} \lambda_1$	22 MASS = CC	15 ⁻¹ 1450
	- For formula type 1, the po (I.EAD). - For polarity sign si_s lead	plarity sign si indicates le	ading and lagging polarit	$\psi_{123} = \cos \chi_1$, y, [None] indicates lagging polarity veform I_{ϕ_0} are acquired for each ma	(LAG), and [+] indicat	es leading polari
	are acquired from the signs for Q ₂₂ Q ₃₀ and Q ₂₂ . For formula type 3, the polarity sign for active power P is used.					
Voltage and	- When calculating formula type 1 and type 2, $\cos^2[\lambda_{ij}]$ is used when $P \ge 0$; $ P80 \cos^2[\lambda] $ is used when $P < 0$. $\frac{(X\rho k + (ij) - X\rho k - (ij))}{} \times 100$					
current ripple factor		$\frac{(\Lambda p k + (i) = \Lambda p k - (i))}{2x X_{do}(i) } \times 100$				

Motor analysis formulae

	-	
Measurement parameters	Setting	Formula
Voltage	Analog DC	$\frac{1}{M_s}\sum_{s=0}^{M_s} A_s$ M : Number of samples during synchronized timing period; s : Sample point number
Pulse frequency	Pulse	Pulse frequency
Torque	Analog DC	$\frac{1}{M} \frac{b_s}{s_s} As \times \text{ scaling setting}$ M : Number of samples during synchronized timing period; s : Sample point number
Frequency		(Measurement frequency - fc setting) × rated torque value fd setting
	Analog DC	$\frac{1}{M_s^{b,c}} \stackrel{L}{A} s \times scaling \ setting$ M : Number of samples during synchronized timing period; s : Sample point number
RPM	Pulse	$\frac{si}{Pulse\ count\ setting} \\ \hline \text{The polarity sign } si \ is\ acquired\ based\ on\ the\ A-phase\ pulse\ rising/falling\ edge\ and\ the\ B-phase\ pulse\ logic\ level\ (high/low)\ when\ direction\ of\ rotation\ detection\ is\ enabled\ in\ single\ mode. }$
Motor power		$Torque \times \frac{2\times 77\times RPM}{60} \times unit coefficient$ The unit coefficient is 1 if the torque unit is N·m, 1/1000 if mN·m, and 1000 if kN·m.
Slip		$\frac{100\times 2\times 60\times input\ frequency- RPM \times pole\ number\ setting}{2\times 60\times input\ frequency}$ The input frequency is selected from 11 to 16.

X: Voltage U or Current I,
 (i): Measurement channel, M: Number of samples during synchronized timing period, s: Sample point number

High accuracy sensor (connected to input terminal Probe 1)


Model	AC/DC CURRENT SENSOR CT6862-05	AC/DC CURRENT SENSOR CT6863-05	AC/DC CURRENT SENSOR 9709-05	AC/DC CURRENT SENSOR CT6865-05
Appearance				
Rated primary current	50A AC/DC	200A AC/DC	500A AC/DC	1000A AC/DC
Diameter of measurable conductors	Max.φ 24mm (0.94")	Max.φ 24mm (0.94")	Max.φ 36mm (1.42*)	Мах.ф 36mm (1.42")
Basic accuracy		01 % f.s. , ±0.2° Hz to 400Hz)	±0.05 %rdg.±0.01 % f.s. , ±0.2° (DC and 45Hz to 66Hz)	±0.05 %rdg.±0.01 % f.s. , ±0.2° (DC and 16Hz to 66Hz)
Frequency characteristics (Amplitude,typical)	DC to 16 Hz: ±0.1%rdg.±0.02%f.s. 50kHz to 100kHz: ±2.0%rdg.±0.05%f.s. 700kHz to 1MHz: ±30%rdg.±0.05%f.s.	DC to 16 Hz: ±0.1%rdg.±0.02%f.s. 50kHz to 100kHz: ±5%rdg.±0.02%f.s. 300kHz to 500k Hz: ±30%rdg.±0.05%f.s.	DC to 45Hz: ±0.2%rdg.±0.02%f.s. 5kHz to 10kHz: ±2%rdg.±0.1%f.s. 20kHz to 100kHz: ±30%rdg.±0.1%f.s.	DC to 16Hz: ±0.1%rdg.±0.02%f.s. 500Hz to 5kHz: ±5%rdg.±0.05%f.s. 10kHz to 20kHz: ±30%rdg.±0.1%f.s.
Operating Temperature	-30°C to 85°C (-22°F to 185°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (-32°F to 122°F)	-30°C to 85°C (-22°F to 185°F)
Effect of conductor position	Within ±0.01%rdg. (DC to 100Hz)	Within ±0.01%rdg. (DC to 100Hz)	Within ±0.05%rdg. (DC 100A)	Within ±0.05%rdg. (AC1000A,50/60Hz)
Effects of external magnetic fields	10mA equivalent or lower (400A/m, 60Hz and DC)	50mA equivalent or lower (400A/m, 60Hz and DC)	50mA equivalent or lower (400A/m, 60Hz and DC)	200mA equivalent or lower (400A/m, 60Hz and DC)
Maximum rated voltage to earth	CAT III 1000Vrms	CAT III 1000Vrms	CAT III 1000Vrms	CAT III 1000Vrms
Dimensions	70W(2.76")×100H(3.94")×53D(2.09")mm		160W(6.30*)×112H(4.41*)×50D(1.97*)mm	
Mass	Approx. 340g (12.0 oz.)	Approx. 350g (12.3oz.)	Approx. 850g (30.0oz.)	Approx. 980g (35.3oz)
Derating properties	(A) 100	200 1 10 100 1 k 10 k 100 k 1 M Frequency (Hz)	S S S S S S S S S S	E 1000 100 1 k 10 k 100 k Frequency [Hz]

Model	AC/DC CURRENT PROBE CT6841-05	AC/DC CURRENT PROBE CT6843-05	
Appearance	1		
Rated primary current	20A AC/DC	200A AC/DC	
Diameter of measurable conductors	Max.φ 20mm (0.79")	Max.φ 20mm (0.79")	
Basic accuracy	±0.3% rdg.±0.01% f.s., ±0.1° (DC < f ≤ 100Hz) ±0.3% rdg.±0.05% f.s., (DC)	±0.3% rdg.±0.01% f.s., ±0.1° (DC < f ≤ 100Hz) ±0.3% rdg.±0.02% f.s., (DC)	
Frequency characteristics (Amplitude,typical)	100Hz to 1kHz: ±0.5%rdg.±0.02%f.s. 1kHz to 10kHz: ±1.5%rdg.±0.02%f.s. 10kHz to 100kHz: ±5.0%rdg.±0.05%f.s. 100kHz to 300kHz: ±10%rdg.±0.05%f.s. 300kHz to 1MHz: ±30%rdg.±0.05%f.s.	100Hz to 1kHz: ±0.5%rdg.±0.02%f.s. 1kHz to 10kHz: ±1.5%rdg.±0.02%f.s. 10kHz to 50kHz: ±5.0%rdg.±0.02%f.s. 50kHz to 300kHz: ±15%rdg.±0.05%f.s. 300kHz to 500kHz: ±30%rdg.±0.05%f.s.	
Operating Temperature	-40°C to 85°C (-40°F to 185°F)		
Effect of conductor position	Within ±0.1%rdg. (DC to 100Hz)		
Effects of external magnetic fields	0.05A equivalent or lower (400A/m, 60Hz and DC)		
Dimensions	153W(6.02") × 67H(2.64") × 25D(0.98") mm		
Mass	Approx. 350 g (12.3oz)	Approx. 370 g (13.1oz)	
Derating properties	50 40 40°C c.Ambient temperature is 60°C 40°C c.Ambient temperature is 60°C c.Ambient temper	### 400 40°C c Ambient temperature 40°C 40°C c Ambient temperature	

Conversion cables

CONVERSION CABLE CT9900 is required to connect the following current sensors to the high accuracy sensor terminal.

For use with CT6862, CT6863, 9709, CT6865, CT6841, CT6843 When using a sensor without "-05" in the model name, Conversion Cable CT9900 must be used to make the connection.

Broadband probe (connected to input terminal Probe 2)

Model	CLAMP ON PROBE 3273-50	CLAMP ON PROBE 3274	CLAMP ON PROBE 3275	CLAMP ON PROBE 3276
Appearance	500	200	200	90
Frequency band	DC to 50 MHz (-3dB)	DC to 10 MHz (-3dB)	DC to 2 MHz (-3dB)	DC to 100 MHz (-3dB)
Rated primary current	30A AC/DC	150A AC/DC	500A AC/DC	30A AC/DC
Diameter of measurable conductors	5 mm dia. or less (insulated conductors)	20 mm dia. or less (insulated conductors)	20 mm dia. or less (insulated conductors)	5 mm dia. or less (insulated conductors)
Basic accuracy	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 150 A rms ±1.0% rdg. ±1 mV 150 A rms to 300 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 500 A rms ±1.0% rdg. ±5 mV 500 A rms to 700 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)
Operating temperature and humidity	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)
Effects of external magnetic fields	Max. 20 mA or equivalent (400A/m, 60Hz and DC)	Max. 150 mA or equivalent (400A/m, 60Hz and DC)	Max. 800 mA or equivalent (400A/m, 60Hz and DC)	Max. 5 mA or equivalent (400A/m, 60Hz and DC)
Dimensions	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m
Mass	Approx. 230 g (8.1oz)	Approx. 500 g (17.6oz)	Approx. 520 g (18.3oz)	Approx. 240 g (8.5oz)
Derating properties	(Y) 300 100 100 100 100 100 100 100 100 100	W	W	(Y) 1300 1000 1 k 10 k 100 k 1 M 100 M 100 M Frequency [Hz]

	CURRENT PROBE CT6700	CURRENT PROBE CT6701	
Appearance	90	90	
Frequency band	DC to 50 MHz (-3dB)	DC to 120 MHz (-3dB)	
Rated primary current	5Arms AC/DC	5Arms AC/DC	
Diameter of measurable conductors	5 mm dia. or less (insulated conductors)	5 mm dia. or less (insulated conductors)	
Basic accuracy	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At 45 to 66 Hz, DC)	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At 45 to 66 Hz, DC)	
Operating temperature and humidity	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	
Effects of external magnetic fields	Max. 20 mA or equivalent (400A/m, 60Hz and DC)	Max. 5 mA or equivalent (400A/m, 60Hz and DC)	
Dimensions	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	
Mass	Approx. 250 g (8.8oz)	Approx. 250 g (8.8oz)	
Derating properties	(c) 100 1k 10k 100k 1M 10M 100M 1G Frequency [Hz]	We share the first of the first	

Sensor switching method

High accuracy sensor terminal: Slide the cover to the left.

When connecting CT6862-05, CT6863-05, 9709-05, CT6865-05, CT6841-05 or CT6843-05

Wideband probe terminal: Slide the cover to the right.

When connecting 3273-50, 3274, 3275, 3276, CT6700 or CT6701

Configurations

Model	Number of built-in channels	Motor analysis & D/A output
PW6001-01	1ch	_
PW6001-02	2ch	_
PW6001-03	3ch	_
PW6001-04	4ch	_
PW6001-05	5ch	_
PW6001-06	6ch	_
PW6001-11	1ch	✓
PW6001-12	2ch	✓
PW6001-13	3ch	✓
PW6001-14	4ch	✓
PW6001-15	5ch	✓
PW6001-16	6ch	✓

PW6001-16 (with 6 channels and motor analysis & D/A output)

- The optional voltage cord and current sensor are required for taking measurements.
- Specify the number of built-in channels and inclusion of Motor analysis & D/A output upon order for factory installation. These options cannot be changed or added at a later date.

Current measurement options

Model		Rated primary current
AC/DC CURRENT SENSOR	CT6862-05	50A
AC/DC CURRENT SENSOR	CT6863-05	200A
AC/DC CURRENT SENSOR	9709-05	500A
AC/DC CURRENT SENSOR	CT6865-05	1000A
AC/DC CURRENT PROBE	CT6841-05	20A
AC/DC CURRENT PROBE	CT6843-05	200A
CLAMP ON PROBE	3273-50	30A
CLAMP ON PROBE	3274	150A
CLAMP ON PROBE	3275	500A
CLAMP ON PROBE	3276	30A
CURRENT PROBE	CT6700	5A
CURRENT PROBE	CT6701	5A

CONVERSION CABLE CT9900

For use with CT6862,, CT6863, 9709, CT6865, CT6841, CT6843 When using a sensor without "-05" in the model name, Conversion Cable CT9900 must be used to make the connection.

Voltage measurement options

VOLTAGE CORD L9438-50 VOLTAGE CORD L1000

Red. black: 1 each 1000 V specifications Cable length: 3 m (9.84 ft)

Red. vellow. blue. grav: 1 each; Black: 4 1000 V specifications Cable length: 3 m (9.84 ft)

GRABBER CLIP 9243

Red. black: 1 each Change the tip of the VOLTAGE CORD to use

Connection options

CONNECTION CORD

Length: 1.7m (5.58ft) For motor signal input

LAN CABLE 9642

Length: 5m (16.41ft) supplied with straight to cross conversion cable

RS-232C CABLE 9637

Length: 1.8m (5.91ft) 9pin to 9pin

Other -

The following made-to-order items are also available. Please contact your Hioki distributor or subsidiary for more information.

- Optical connection cable, Max. 500 m
- Rackmount fittings (EIA, JIS)
- Carrying case (hard trunk, with casters)

Carrying case

GP-IB CONNECTOR CABLE 9151-02

CONNECTION CABLE 9444

All information correct as of Feb. 27, 2015. All specifications are subject to change without notice.

Length: 1.5m (4.92ft) For external control interface straight 9pin to 9pin

OPTICAL CONNECTION CABLE L6000

Length: 10m (32.8ft) For synchronized control

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies. **DISTRIBUTED BY**

HIOKI E.E. CORPORATION

HEADQUARTERS

B1 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com/E-mail: os-com@hioki.co.jp

HIOKI USA CORPORATION

TEL +1-609-409-9109 FAX +1-609-409-9108 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-63910090 FAX +86-21-63910360

http://www.hioki.cn / E-mail: info@hioki.com.cn

HIOKI INDIA PRIVATE LIMITED

TEL +91-124-6590210 FAX +91-124-6460113 E-mail: hioki@hioki.in

HIOKI SINGAPORE PTE. LTD.

TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info-sg@hioki.com.sg

HIOKI KOREA CO., LTD.

TEL +82-42-936-1281 FAX +82-42-936-1284 E-mail: info-kr@hioki.co.jp