

Tip Care Tutorial

How to extend the life of soldering tips and cartridges

- Tip Construction, costs
- What effects tip life with lead free solder
- Plating failure explained
- Best practice, soldering techniques
- Tip maintenance

Tip construction

With the cost of tips and cartridges varying from \$8 to over \$60, the implications on cost of ownership are dramatically increased due to lead free soldering

What Affects Tip Life With Lead Free?

- High tip idle temperatures are the major cause of Short Tip Life
- Flux is much more aggressive, especially with Pb-Free Alloys
- Surface contaminates (Oxidation & Flux Residues) build very quickly causing a reduction in thermal transfer to the working area
- Surface contaminates (Oxidation & Flux Residues) build very quickly causing operators to aggressively "force" the connection causing tip damage
- Tip surface Tin-Iron Intermetallics form faster with lead free solders

Lead free

9225260.	
22 M	 10000
	92252601

Alloy	Tin	Lead	Antimony	Copper	Silver	Melting Point/Range	
Sn63,63/37 & 63EN	63	37	-	-	-	183	standard electronics rework
Sn60, 60/40 & 60EN	60	40	-	-	-	183-188	standard electronics rework
50/50 & 50EN	50	50	-	-	-	183-212	electric al/industrial soldering
45/55 & 45EN	45	55	-	-	-	183-224	electric al/industrial soldering
40/60 & 40EN	40	60	-	-	-	183-234	electric al/industrial soldering
30/70 & 30EN	30	70	-	-	-	183-255	electric al/industrial soldering
20/80 & 31D	20	80	-	-	-	183-275	electric al/industrial soldering
15/85 & 4D	15	85	-	-	-	227-288	electric al/industrial soldering
45D	18	80	-	-	2	178-270	Abminium soldering
95A	95	-	5	-	-	236-243	high temp. lead free alloy
96S & Sn96	96.3	-	-	-	3.7	221	possible lead free option
96SC (SAC387)	95.5	-	-	0.7	3.8	217	common lead free alloy
97SC (SAC305)	96.5	-	-	0.5	3	217	common lead free alloy
97Cu3	97	-	-	3	-	230-250	high temp. lead free alloy
99C	99.3	-	-	0.7	-	227	common lead free alloy
HMP	5	93.5	-	-	1.5	296-301	high temp. standard alloy
Savbiil	50	48.5	-	1.5	-	183-215	thin copper wire soldering
Savbitó	60	38	-	2	-	183-190	thin copper wire soldering
Sn62 or LMP	62	36	-	-	2	179	low melting point alloy

The table shows the tin content and melt point range for a range of solder wires from multicore

Failure Mechanism

Confidential and Proprietary to OK International. © OK International All rights reserved.

90% Time to Failure

10% Time to Failure

Accelerated Tip Erosion with Lead-Free

Confidential and Proprietary to OK International. © OK International All rights reserved.

Stress/Cracking Failures

Tip Life Failure Matrix

Condition	Symptom	Cause	Prevention	Remedy
Organic Residue	De-wetted & Black Residue	Acidic Erosion	Keep Tip Well Tinned	Solvent clean + Mild Abrasion + Solder pot re-tin if needed
Oxidation	De-wetted (rust colour)	Tip to air exposure	Keep Tip Well Tinned	Activated flux & solder pot re-tin
Sn-Fe Oxide Intermetallc Formation	De-wetted & Black Residue	Excessive tin exposure	Power Back system during idle	Mild abrasive clean and solder pot re-tin
Fe-Cracking	Hole in Fe	Operator tip pressure	Keep Tip Well Tinned	Discard Tip
Fe-Dissolution (flux)	Hole in Fe	Acidic Erosion	Rotate tip to distribute solder	Discard Tip
Fe-Dissolution (tin)	Hole in Fe	Long term tin exposure	Power back system at idle	Discard Tip

Bulk Failures

Surface Failures

Higher Conductivity Factor Tips:

- Conductivity is the method thermal energy travels from the tip to the PCB. It is *conducted* from the heater through the tip to its target
- The larger the thermal highway the more efficient the delivery of thermal energy will be
- Selecting the optimal thermal highway will minimize the amount of thermal demand to a tip and improve tip life.

Conductivity Factor

Conductivity Factor = Energy Transfer Capability of the Tip Geometry It is Directly Related to Tip Width and Length

How To Extend Tip Life

- Use higher thermal performance systems that operate at lower tip temperatures
- Power Control (SmartHeat[®]), *not* Temperature Control (Conventional)
- Tin tips well to prevent oxides and flux contamination
- Reduce tip idle temperature over long idle periods use an "Auto Sleep Stand"

Auto Sleeper Stand

- The Auto Sleep Work stand only works with Metcal's SmartHeat_® Technology
- These stands automatically reduce the power supplied to the hand piece, which leads to:
 - Reduced idle temperatures
 - Slower chemical reactions
 - Less inter-metallic formation
 - Less de-wetting
 - Longer tip life

Sleeper stand effects

Example:

<u>STTC-017</u> assumed tip idle temperature approx of Sleeper stand for 60 seconds temperature drops to approx Sleeper stand for 200 seconds temperature drops to approx Sleeper stand for 300 seconds temperature drops to approx

Temp Drop

Additional Sleeper benefits

With a sleeper stand the power consumption of a soldering iron is greatly reduced

Theoretical Example:

If you have 5 irons each in production using on average <u>40 watts</u> per hour over an 8 hours day your consumption is:

5 irons X 40 watts = 200 watts X 8 hours (1 day) = 1600 watts per day

Potentially a soldering iron can spend up to **50%** of its time in the stand between operations; if the stand is a sleeper stand the idle wattage is reduced to around 5 watts.

The equation now becomes;

5 irons X 40 watts = 200 watts X 4 hours (1 day) = 800 watts +

```
5 irons X 5 watts = 25 watts X 4 hours (1day) = 200 watts =
```

1000 watts per day

saving 600 watts a day!!!

It is important to select the correct geometry for the job. Selecting a geometry which is too small will lead to cold solder joints or increase the dwell time on the solder joint.

Selecting a tip which is too large could result in causing damage to the PCB.

Soldering techniques -

Another common cause of tip failure is the method in which solder wire is applied. If the wire is continually fed onto the same point of a soldering tip, eventually, the plating will be removed and a hole will appear at this point.

To eliminate this risk, NEVER feed the solder wire into the soldering tip. The solder wire should be fed onto the component and/or terminal

Soldering techniques – Heat bridging

Tip Care: During Soldering Application - Summary

- Use correct amount of heat for the job
- Select correct tip geometry for the application Note: more than one tip may be required
- Feed solder wire onto the component lead
 <u>NOT</u> on the tip directly
- Always re-tin the tip when returning the hand-piece to the workstand.
- Do not apply pressure to tip to get more heat
- Do not "scrub" lead
- Only use clean, damp sulphar free sponges or the brass pads supplied to regularly clean the tip.

Tip Care: After Soldering

Do Not Use Tips as a Screwdriver or Prying Tool

Turn Station Off When Not in Use

2

Remove Components / Debris with Tweezers or Cleaning

Ν

Do Not Bang on Work Station Edge

Confidential and Proprietary to OK International. © OK International All rights reserved

YES

Do Not Use Pliers to Change Tip Cartridges.

Use a Cartridge Removal Pad

YES!

Confidential and Proprietary to OK International. © OK International All rights reserved.

Tip Care: Cleaning and Tinning

- Use a Clean, damp sponge to Clean the Tip
- Use De-Ionized or Distilled Water ONLY!
- Do Not Use a Sponge With Sulfurs or Detergents
- Tin Tips During Storage

Tip Care: Cleaning and Tinning

Abrasives

• LEAD: Do Not Use a Dry Sponge, Rag, or Any Abrasive

- LEAD-FREE: Use Abrasive Pad Recommended by the Manufacturer
 - With Lead-free, a brass cleaning pad may be required if you are experiencing contamination problems associated with higher volumes of flux, higher soldering temperatures and more active flux composition

BE CAREFUL !

Reconditioning Tips

- All methods currently stated are suggestions to prevent reduced tip life.
- If excessive levels of oxides are allowed to build up, the thermal performance and the tips ability to wet will deteriorate.
- In these circumstances, it is possible to re-condition an abused tip to a re-usable condition by the following methods.
- Tip Scrubbers. These are mild abrasive blocks which remove heavy oxides from the tip.
- Tip savers. These are a flux and solder paste compound which can be used to recondition the tip.
- Please be aware that the methods mentioned above should not be performed as part of regular cleaning operations but only as a last resort.