Data Timing Generator
DTG5078 • DTG5274 • DTG5334 Data Sheet

Features & Benefits
- Versatile Platform Combines Features of Data Generator, Pulse Generator, and DC Source
- Up to 3.35 Gb/s Data Rate
- From 1 to 96 Data Channels (Master/Slave)
- Class Leading Delay Resolution of 0.2 ps (DTG5274/DTG5334), 1 ps (DTG5078), up to 600 ns of Total Delay
- Modular Architecture Helps to Protect Your Investment and Allows the Instrument to Expand With Your Growing Needs
- Advanced Control Over Signal Parameters to Meet Most Current Testing Needs, Including Stressed Eye Generation
 - External Jitter Injection (DTGM31, DTGM32 Modules)
 - Level Control with 5 mV Resolution
- Easy to Use and Learn, Shortens Time to Test
 - Easily Configure with Plug-in Modules
 - Intuitive Windows User Interface
 - Benchtop Form Factor
 - Integrated PC Supports Network Integration and Built-in CD-ROM, LAN, Floppy Drive, USB Ports
- Up to 64 Mb Pattern Depth Per Channel for Complex Data Patterns

Applications
- Semiconductor Device Functional Test and Characterization
 - Support for Semiconductor Technologies from TTL to LVDS
 - Initial Verification and Debugging, Comprehensive Characterization, Manufacturing, and Quality Control
- Compliance and Interoperability Testing to Emerging Standards
 - PCI-Express Gen1:2.5 Gbps
 - Serial ATA Gen1/2:1.5 Gbps/3 Gbps
 - InfiniBand 2.5 Gbps
 - XAUI: 3.125 Gbps
 - HDMI: Version 1.3 / DVI
- Magnetic and Optical Storage Design
 - Research, Development, and Test of Next-generation Devices (HDD, DC/DVD, Blu-ray)
- Data Conversion Device Design
 - Characterization and Test of Next-generation D/A Convertors
- Imaging Sensor Device Design
 - Characterization and Functional Testing of Next-generation Imaging Devices (CCD/CMOS)
- Jitter Transfer and Jitter Tolerance Testing

New serial data standards, expanding networks, and ubiquitous computing continually redefine the cutting edge of technology. The design engineer is challenged to economize without sacrificing performance.

The DTG5000 Series combines the power of a data generator with the capabilities of a pulse generator in a versatile, benchtop form factor, shortening the duration of complex test procedures and simplifying the generation of low-jitter, high-accuracy clock signals, parallel or serial data across multiple channels. Its modular platform allows you to easily configure the performance of the instrument to your existing and emerging needs to minimize equipment costs. Three mainframes and five plug-in output modules combine to cover a range of applications from legacy devices to the latest technologies. In addition, eight low-current, independently-controlled DC outputs can substitute for external power supplies. Each mainframe incorporates a full compliment of auxiliary input and output channels to easily integrate with other instruments, such as oscilloscopes and logic analyzers, to create a flexible and powerful lab.
Characteristics

Mainframe Characteristics

Basic Features

Number of Slots for Output Modules –
DTG5274: 4 slots (A, B, C, D).

Master-Slave Capabilities –
DTG5078: Up to three DTG5078 mainframes can be connected in Master-Slave configuration.
DTG5274: Up to two DTG5274 mainframes can be connected in Master-Slave configuration.
DTG5334: Up to two DTG5334 mainframes can be connected in Master-Slave configuration.

Operating Modes –
Pulse Generator Mode (slots A to D only).
Data Generator Mode.

Output Patterns –
NRZ, RZ, R1, Pulse patterns (DTG5078/5274/5334: Slot A-D; DTG5078 Slot E-H, NRZ only).

Timing Parameters
Data Rate Range –
DTG5078:
 NRZ: 50 Kb/s to 750 Mb/s.
 RZ, R1, Pulse Mode: 50 Kb/s to 375 Mb/s.
DTG5274:
 NRZ: 50 Kb/s to 2.7 Gb/s.
 RZ, R1, Pulse Mode: 50 Kb/s to 1.35 Gb/s.
DTG5334:
 NRZ: 50 Kb/s to 3.35 Gb/s (settable to 3.4 Gb/s)
 RZ, R1, Pulse Mode: 50 Kb/s to 1.675 Gb/s (settable to 1.7 Gb/s)

Data Rate (Setting) Resolution –
Internal Clock: 8 digits.
External Clock: 4 digits.
External Phase Lock In: 4 digits.

Output Timing Controls
Delay Range –
PG Mode: 0 to 3 μs.

DG Mode:
 Long Delay Off: 0 to 5 ns (NRZ, RZ, R1).
 Long Delay On: NRZ:
 Period ≥1.25 ns: 0 to 300 ns (Hardware sequence) or to 600 ns (Software sequence).
 Period <1.25 ns: 0 to (240 ns × period) (Hardware sequence) or to (480 ns × period) (Software sequence).
 Long Delay On: RZ/R1:
 Period ≥2.5 ns: 0 to 300 ns (Hardware sequence) or to 600 ns (Software sequence).
 Period <2.5 ns: 0 to (120 ns × period) (Hardware sequence) or to (240 ns × period) (Software sequence).

Delay Resolution –
DTG5078: 1 ps.
DTG5274/5334: 0.2 ps.

Phase Resolution – 0.1%

Differential Timing Offset Feature [between pair of two adjacent channels (Odd and Even)] –
Range: -1.0 to 1.0 ns.
Resolution:
 DTG5078: 1 ps.
 DTG5274/5334: 0.2 ps.

Semiautomatic Deskew Calibration –
Range: 500 ps.
Accuracy (after skew calibration):
 100 ps, slots A to D.
 200 ps, slots E to H (DTG5078 only).

Duty Cycle Adjustment Range – 0 to 100% (with 0 delay setting, RZ, R1, Pulse mode only).

Duty Cycle Adjustment Resolution – 0.1%.

Pulse Width Maximum Range – 290 ps to (period - 290 ps) (RZ, R1, Pulse mode only).
(Range also depends on delay settings.)

Pulse Width Resolution – 5 ps.

Jitter Performance (output channels)
Clock Pattern (“1010...” clock pattern)
Random Jitter –
DTG5078: <4 ps RMS (at 750 Mb/s with DTGM21, 0.8 Vp-p, delay: 0.0 ns).
DTG5274: <3 ps RMS (at 2.7 Gb/s with DTGM30, 0.8 Vp-p, delay: 0.0 ns).
DTG5334: <3 ps RMS (at 3.35 Gb/s with DTGM30, 0.8 Vp-p, delay: 0.0 ns).

Maximum Number of Output Channels

<table>
<thead>
<tr>
<th>Number of Like Mainframes</th>
<th>DTG5078**</th>
<th>DTG5274, DTG5334**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DTG21</td>
<td>DTG30</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>48</td>
</tr>
</tbody>
</table>

* The DTG5078 has a limit to the number of modules that may be installed; the total must be less than 100. The coefficient for each module is shown below.

DTG5078: 8, DTG21: 10, DTG30: 33, DTG31: 32, DTG32: 32
Data Pattern (PRBS pattern 2^15-1)
Total Jitter –

- **DTG5078:** at 750 Mb/s
 - 18 ps\(_{\text{rms}}\) (<85 ps\(_{\text{pp}}\) (typical) with DTGM21, 0.8 V\(_{\text{pp}}\), delay: 0.0 ns).
- **DTG5274:** at 2.7 Gb/s
 - 16 ps\(_{\text{rms}}\) (<80 ps\(_{\text{pp}}\) (typical) with DTGM30, 0.8 V\(_{\text{pp}}\), delay: 0.0 ns).
 - 14 ps\(_{\text{rms}}\) (<80 ps\(_{\text{pp}}\) (typical) with DTGM31, 0.8 V\(_{\text{pp}}\), delay: 0.0 ns).
- **DTG5334:** at 3.35 Gb/s
 - 15 ps\(_{\text{rms}}\), 50 ps\(_{\text{pp}}\) (typical) with DTGM30, 0.8 V and DTGM31, 0.8 V\(_{\text{pp}}\), delay: 0.0 ns).
 - 13 ps\(_{\text{rms}}\), 50 ps\(_{\text{pp}}\) (typical) with DTGM31, 0.8 V\(_{\text{pp}}\), delay: 0.0 ns).
 - 44 ps\(_{\text{pp}}\) with DTGM30, Delay: 0.0 ns, Amplitude = 0.4 V\(_{\text{pp}}\), Offset = 0.0 V, Data Format = NRZ, Jitter Mode = Off, an ambient temperature of 20 to 30 °C.

Signal Control Features
Cross-point Adjustment (duty cycle distortion) –
Range: 30% to 70%.
Resolution: 1%.
(Slots A to D, and DTGM30/M31/M32 used in NRZ mode.)

Jitter Generation –
Jitter All or Partial Pattern.
Jitter Profile: Sine, Gaussian Noise, Square, Triangle.
Jitter Freq./Res.: 0.015 Hz to 1.56 MHz / 1 mHz.
Jitter Amplitude: Up to 16.5 U\(_{\text{IL}}\) (depending on data rate and jitter frequency).
(Internal Jitter Generation available on Channel A1 only.)

Pulse and Data Features
Pulse Generator (PG) Features (unique to PG mode) –
Continuous or Burst.
Burst Count: 1 to 65,536.
Pulse Rate: Off, 1/1, 1/2, 1/4, 1/8, 1/16.

Data Patterns
Pattern Length per Channel (Pattern Memory) –
Minimum: DTG5078: 1 bit (software mode) or 240 bits (hardware mode).
DTG5274/5334: 1 bit (software mode) or 960 bits (hardware mode).
Maximum:
- **DTG5078:** 8,000,000 bits.
- **DTG5274:** 32,000,000 bits (in multiples of four).
- **DTG5334:** 64,000,000 bits (in multiples of four).

Built-in Data Patterns – Binary Counter, Johnson Counter, Graycode Counter, Walking Ones, Walking Zeros, Checker Board, User-defined Patterns.

Pattern Import Capability –
Type/Tools:
- Tektronix TLA Data Exchange Format File (*.det).
- Tektronix HFS Vector File (ASCII) (*.vca).
- Tektronix HFS Vector File (binary) (*.vcb).
- Tektronix AWG2000 Series (*.wfm).
- Tektronix AWG4000s/500s/610/710/710B (*.pat).
- Tektronix DG2000 Series (*.dat).

Medium/Pass:
Import data through GPIB, LAN, CD-ROM, floppy drive, USB memory devices.

Pattern Copy and Paste Capability – Copy, paste, and rotation between data listing/waveform editor and spreadsheet software (e.g. Excel) through the clipboard.

PRBS/PRWS Data Patterns – (Note: Memory supports PRBS/PRWS patterns, and user can create errored PRBS)
2^1-1, 2^2-1, 2^3-1, 2^4-1, 2^5-1, 2^6-1, 2^7-1, 2^8-1, 2^9-1, 2^10-1, 2^11-1, 2^12-1, 2^13-1, 2^14-1, 2^15-1, 2^16-1.

Sequencer Features
Sequence Length –
1 to 8,000 steps for main sequence.
1 to 256 steps for subsequence.
Max. Number of Blocks – 8,000.
Max. Number of Subsequences – 50.
Repeat Counter – 1 to 65,536 or infinite.
Channel Addition – AND or XOR (slots A to D only).

Note: DTG5078 slots E, F, G, and H do not support the following: RZ, R1, pulse generation modes which includes controls for trail delay/duty cycle/pulse width, channel addition, and variable cross-points.

Auxiliary Channels
Clock Out
Connector – Complementary output (common offset and ground).
- **DTG5078/5274:** SMA rear panel.
- **DTG5334:** SMA front panel.

Frequency Range –
- **DTG5078:** 50 kHz to 750 MHz.
- **DTG5274:** 50 kHz to 2.7 GHz.
- **DTG5334:** : 50 kHz to 3.35 GHz, settable up to 3.4 GHz.

Frequency Resolution –
- 8 digit setting resolution
 Minimum: 1 mHz (e.g. with 50 kHz setting).

Internal Clock Accuracy – within ±1 ppm.
Jitter –
- **DTG5078:** <2 ps\(_{\text{rms}}\) at 750 Mb/s, at 0.8 V\(_{\text{pp}}\) (typical).
- **DTG5274:** <2 ps\(_{\text{rms}}\) at 2.7 Gb/s, at 0.8 V\(_{\text{pp}}\) (typical).
- **DTG5334:** <2 ps\(_{\text{rms}}\) at 3.35 Gb/s, at 0.8 V\(_{\text{pp}}\) (typical).

Amplitude/Resolution –
- 0.05 V\(_{\text{pp}}\) to 1.25 V\(_{\text{pp}}\) / 10 mV (50 Ω).
- 0.06 V\(_{\text{pp}}\) to 2.5 V\(_{\text{pp}}\) / 10 mV (1 Ω).

Output Voltage Window –
- 2.0 to 2.47 V (50 Ω).
- 2.0 to 7.00 V (1 Ω).

Max. Output Current – ±80 mA.
Transition Times (20% - 80%) –
- **DTG5078:** <85 ps (Amplitude = 0.1 V\(_{\text{pp}}\), Offset = 0 V) (typical).
- <100 ps (Amplitude = 1.0 V\(_{\text{pp}}\), Offset = 0 V) (typical).

- **DTG5274:**
 - <70 ps (Amplitude = 0.1 V\(_{\text{pp}}\), Offset = 0 V) (typical).
 - <80 ps (Amplitude = 1.0 V\(_{\text{pp}}\), Offset = 0 V) (typical).

- **DTG5334:**
 - <100 ps (Amplitude = 1.0 V\(_{\text{pp}}\), Offset = 0 V) (typical).

Overshoot – <10%, at High = 1.0 V, Low = 0 V into (50 Ω) (typical).

Other Output Channels
Auxiliary DC Outputs – -3.0 to 5.0 V / 10 mA, Max. current: ±30 mA, 8 independently controlled outputs, Connector: 2 × 8 pin header on front panel.
Sync Out – CML (current mode logic), VOH: 0 V, VOL: -0.4 V (50 Ω) (typical), SMA Connector, SE, Front panel, Rise/Fall Time (20 to 80%): 140 ps, Delay to Data Out: -4.5 ns (typical).

10 MHz Reference Out – 1.2 V\(_{\text{pp}}\) (50 Ω, AC coupled) (typical), 2.4 V\(_{\text{pp}}\) (1 Ω, AC coupled) (typical), BNC Connector, Rear Panel.
Input Channels

External Clock In –
Input Ranges:
- DTG5078: 1 MHz to 750 MHz. SMA connector, rear panel.
- DTG5274: 1 MHz to 2.7 GHz. SMA connector, rear panel.
- DTG5334: 1 MHz to 3.35 GHz. SMA connector, front panel.

0.4 V_{p-p} to 2 V_{p-p} (50 Ω, AC Coupled), 50% ±5% duty cycle.

10 MHz Reference In –
Input Ranges:
- DTG5078: 10 MHz ±0.1 MHz, 0.2 V_{p-p} to 3 V_{p-p} (50 Ω, AC coupled), BNC connector, rear panel.

Phase Lock In –
Input Ranges:
- 1 MHz to 200 MHz, 0.2 V_{p-p} to 3 V_{p-p} (50 Ω, AC coupled), BNC connector, rear panel.

Skew Cal In – Single-ended, ECL (into 50 Ω to -2 V), SMA connector, front panel.

Trigger In –
Input Ranges:
- -5 V to 5 V (50 Ω), 0.1 V resolution, -10 V to 10 V (1 kΩ), Min. 0.5 V_{p-p} (50 Ω), 1.0 V_{p-p} (1 kΩ), 20 ns pulse width, Positive or Negative edge trigger, Delay timing: see manuals, BNC connector, front panel.

Event In –
Input Ranges:
- -5 V to 5 V (50 Ω), 0.1 V resolution, -10 V to 10 V (1 kΩ), 0.1 V resolution, Min. 0.5 V_{p-p} (50 Ω), 1.0 V_{p-p} (1 kΩ), Polarity: Normal or Invert, Delay timing: see manuals, BNC connector, front panel.

Instrument Control/Data Transfer Ports

GPIB – GPIB for remote control and data transfer. (conforms to IEEE 488.1, compatible with IEEE 488.2 and SCPI-1999.0).

LAN – LAN for PC interface, remote control, and data transfer (conforms to IEEE 802.3).

Computer System and Peripherals

Compact PCI-based PC, Celeron 566 MHz CPU, Microsoft Windows 2000 Professional, 128 MB SDRAM, 20 GB Hard Drive, 1.44 MB floppy drive on front panel, CD-ROM in rear panel, included USB compact keyboard and mouse.

PC I/O Ports

USB 1.1 compliant ports (3 total, 1 front, 2 rear), PS/2 mouse and keyboard connectors (rear panel), RJ-45 Ethernet connector (rear panel) supports 10Base-T and 100Base-Tx, VGA Out (rear panel), RS-232C.

Physical Characteristics

Display Characteristics – LCD color display, 800 (H) × 600 (V) (SVGA).

<table>
<thead>
<tr>
<th>Mainframe Dimensions</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>266</td>
<td>10.5</td>
</tr>
<tr>
<td>Width</td>
<td>445</td>
<td>17.5</td>
</tr>
<tr>
<td>Length</td>
<td>462</td>
<td>19.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Module Dimensions</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>33</td>
<td>1.3</td>
</tr>
<tr>
<td>Width</td>
<td>84</td>
<td>3.3</td>
</tr>
<tr>
<td>Length</td>
<td>133</td>
<td>5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (approx.)</th>
<th>kg</th>
<th>lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTG5078</td>
<td>17.5</td>
<td>38.6</td>
</tr>
<tr>
<td>DTG5274</td>
<td>17.0</td>
<td>37.5</td>
</tr>
<tr>
<td>DTG5334</td>
<td>17.0</td>
<td>37.5</td>
</tr>
<tr>
<td>DTGM21</td>
<td>0.26</td>
<td>0.57</td>
</tr>
<tr>
<td>DTGM30</td>
<td>0.27</td>
<td>0.60</td>
</tr>
<tr>
<td>DTGM31</td>
<td>0.27</td>
<td>0.60</td>
</tr>
<tr>
<td>DTGM32</td>
<td>0.27</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Mechanical Cooling – Required Clearance

Top and Bottom – 2 cm.
Side – 15 cm.
Rear – 7.5 cm.

Power Supply

Power Source – 100 to 240 VAC, 47 to 63 Hz.

Power Consumption – 560 W.

Environmental

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Operating</th>
<th>Nonoperating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>+10 °C to +40 °C</td>
<td>-20 °C to +60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>20% to 80% relative humidity with a maximum wet bulb temperature of 29.4 °C, noncondensing</td>
<td>(no diskette in floppy drive): 5% to 90% relative humidity with a maximum wet bulb temperature of 40 °C, noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>3,000 m (10,000 ft.)</td>
<td>12,000 m (40,000 ft.)</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>2.65 m/s<sup>2</sup> RMS (0.27 G<sub>peak</sub>) from 5 Hz to 500 Hz, 10 minutes each axis 3-axes. 30 minutes total</td>
<td>22.36 m/s<sup>2</sup> RMS (2.28 G<sub>peak</sub>) total from 5 Hz to 500 Hz, 10 minutes each axis 3-axes. 30 minutes total</td>
</tr>
</tbody>
</table>

Safety –
UL1010B-1.
CAN/CSA-22.2 No. 1010.1.
EN61010-1/A2 1995.

Electromagnetic Compatibility (EMC) –
Europe:
- EN61326 Class A.
- EN61000-3-2, EN61000-3-3.

Australia / New Zealand:
- AS/NZS 2064.

www.tektronix.com
Output Module Characteristics

Basic Features

<table>
<thead>
<tr>
<th>DTGM21</th>
<th>DTGM30</th>
<th>DTGM31</th>
<th>DTGM32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Channels and Connections</td>
<td>4 single-ended (installed in DTG5078) 2 single-ended (DTG5274/5334) 4 SMA connectors</td>
<td>2 complementary channels 4 SMA connectors</td>
<td>1 complementary channel 2 SMA connectors</td>
</tr>
<tr>
<td>Maximum Data Rate (calculated by transition time)</td>
<td>1.1 Gb/s</td>
<td>3.35 Gb/s</td>
<td>350 Mb/s[^2]</td>
</tr>
<tr>
<td>Normal/ Complement (Invert)</td>
<td>Selectable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Impedance</td>
<td>50 Ω / 23 Ω (selectable)</td>
<td>50 Ω</td>
<td></td>
</tr>
<tr>
<td>Enable/Disable</td>
<td>Yes (software switch)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Channel Timing

<table>
<thead>
<tr>
<th></th>
<th>Transition Times (20 - 80%) (50 Ω)</th>
<th>Transition Time Control</th>
<th>Slew Rate Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/ Complement (Invert)</td>
<td><340 ps (VOL = 0.0, VOH = 1.0) (typical)</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td><1.0 ns (VOL = -1.65, VOH = 3.7) (typical)</td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

Channel Output Levels

<table>
<thead>
<tr>
<th></th>
<th>Amplitude/Resolution</th>
<th>Output Voltage Window</th>
<th>DC Accuracy (±3% of the set value) ±50 mV into 50 Ω to GND</th>
<th>Limit setting</th>
<th>Maximum Output Current</th>
<th>Overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25 to 5.35 V_{pp} / 5 mV (from 23 Ω source impedance into 50 Ω)</td>
<td>-1.65 V to 3.70 V (from 23 Ω source impedance into 50 Ω)</td>
<td>±50 mV into 50 Ω to GND</td>
<td>±80 mA</td>
<td><15% (typical) at High = 1.0 V, Low = 0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25 to 3.9 V_{pp} / 5 mV (from 50 Ω source impedance into 50 Ω)</td>
<td>-1.2 V to 2.7 V (from 50 Ω source impedance into 50 Ω)</td>
<td></td>
<td></td>
<td><10% (typical) at High = 1.0 V, Low = 0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50 to 7.8 V_{pp} / 5 mV (from 50 Ω source impedance into 1 MΩ)</td>
<td>-2.4 V to 5.4 V (from 50 Ω source impedance into 1 MΩ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03 to 1.25 V_{pp} / 5 mV (into 50 Ω)[^3]</td>
<td>-2.0 V to 2.47 V (into 50 Ω)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06 to 2.5 V_{pp} / 5 mV (into 1 MΩ)[^3]</td>
<td>-2.0 V to 7.0 V (into 1 MΩ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Support Native Logic</td>
<td>TTL, CMOS, (P)ECL, LVPECL</td>
<td>LVDS, CMOS, (P)ECL, LVPECL, CML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External Jitter Control

<table>
<thead>
<tr>
<th></th>
<th>External Jitter Control input channels and connectors</th>
<th>Input range</th>
<th>Jitter Frequency</th>
<th>Jitter Amplitude</th>
<th>External Tri-state (Hi Z) Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes (SMB input connector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.5 V to +0.5 V (typical)</td>
<td>DC to 250 MHz[^4]</td>
<td>240 ps_{pp} for 1 V_{pp} input at Data rate ≤2.7 Gb/s[^5]</td>
<td>Yes (SMB input connector)</td>
</tr>
</tbody>
</table>

Control Channels

<table>
<thead>
<tr>
<th></th>
<th>Tri-state Enable</th>
<th>Control Channels</th>
<th>Delay Time from Inhibit In to Data Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable: Hi 3.3 V, Disable Lo: 0.0 V</td>
<td>By output module level</td>
<td>Active to Inhibit: 13 ns, Inhibit to Active: 12 ns</td>
</tr>
</tbody>
</table>

[^2]: Minimum pulse width ≥2.86 ns.
[^3]: Maximum output amplitude is dependent on output voltage window (offset). (See Figure 1.)
[^4]: Up to 400 MHz by overdriving jitter input (max -1.0 V to +1.0 V_{pp}). (See Figure 2.)
[^5]: Jitter amplitude at data rates ≥2.7 Gb/s calculated as 240 - 61.5 × (data rate - 2.7) ps_{pp} for 1 V_{pp} input (see Figure 3.).
Figure 1. DTGM30, M31, M32 Output Amplitude vs. Offset

Figure 2. DTGM31 Jitter Input Frequency Response

Figure 3. DTGM31 Maximum Jitter Amplitude vs. Data Rate
Ordering Information

Mainframes

DTG5078
- 750 Mb/s, 8-slot mainframe.

DTG5274
- 2.7 Gb/s, 4-slot mainframe.

DTG5334
- 3.35 Gb/s, 4-slot mainframe.

Mainframes Include:
- Microsoft Windows 2000 Professional operating system recovery disk,
- DTG5000 Series application software install disk,
- user manual (technical reference, registration card, front cover, compact USB keyboard, USB mouse, lead set for DC Output, 16-CON, twisted pair, 24 in. (60 cm),
- 50 Ω SMA terminator (male, DC to 18 GHz), SMA connector cap (10 ea. with DTG5078, 8 ea. with DTG5274/5334), power cord, calibration certificate.

Please specify power cord and language option when ordering.

Mainframe Options

- Opt. 1R – Rackmount.

International Power Plugs

- Opt. A0 – North America power.
- Opt. A3 – Australia power.
- Opt. A5 – Switzerland power.
- Opt. A99 – No power cord or AC adapter.

Language Options

Output Modules

DTGM21
- 4 channels (DTG5078), 2 channels (DTG5274/5334).
- 5.35 Vp-p (from 23 Ω to 50 Ω).
- 3.9 Vp-p (50 Ω), 7.8 Vp-p (1 MΩ).
- Tri/Tf (20% to 80%) <340 ps (1 Vp-p into 50 Ω), fixed.
- External Tri-state (Hi_Z) control function.

DTGM30
- 2 channels.
- 1.25 Vp-p (50 Ω), 2.5 Vp-p (1 MΩ).
- Tri/Tf (20% to 80%) <110 ps (1 Vp-p into 50 Ω), fixed.

DTGM31
- 1 channel.
- 1.25 Vp-p (50 Ω), 2.5 Vp-p (1 MΩ).
- Tri/Tf (20% to 80%) <110 ps (1 Vp-p into 50 Ω), fixed.
- External jitter control input.
- Jitter frequency DC – 250 MHz.
- Jitter amplitude up to 240 ps.

DTGM32
- 1 channel.
- 1.25 Vp-p (50 Ω), 2.5 Vp-p (1 MΩ).
- Tri/Tf (20% to 80%) <110 ps (1 Vp-p into 50 Ω), fixed.
- External jitter control input.
- Jitter frequency DC – 50 MHz.
- Jitter amplitude up to 1 ns / 2 ns.

Output Modules Include:
- Installation sheet (Japanese/English), SMA connector cap (set of 4 with DTGM21, set of 2 with DTGM30), 50 Ω SMA terminator (DC to 18 GHz) (set of 2 with DTGM30, set of 1 with DTGM31/32), power cord, calibration certificate.

Service Options

- Opt. C5 – Calibration Service 5 Years.

Service Upgrade Kit

- DTG53UP
 - Opt. 13 – Enable operation of up to 3.4 Gb/s, and total jitter <44 ps up to 3.35 Gb/s, 800 mVp-p differential output with DTGM30, requires the order of Opt. IFC.

- DTGM30UP
 - Opt. 13 – Enables total jitter <44 ps up to 3.35 Gb/s, 800 mVp-p differential output with DTG5334, requires the order of Opt. IFC.

Recommended Accessories

- **Service Manual (English)** – Order 071-1285-xx.
- **Test Adapters**

Note: These adapters do not include clock recovery circuits.
Data Sheet

Cables

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>012-A299-xx</td>
<td>Lead set for DC Output, 16-CON, twisted pair, 24 in (60 cm)</td>
</tr>
<tr>
<td>012-1505-xx</td>
<td>Pin header cable, 20 in. (51 cm)</td>
</tr>
<tr>
<td>012-1503-xx</td>
<td>Pin header SMB cable, 20 in. (51 cm)</td>
</tr>
<tr>
<td>012-0991-xx</td>
<td>GPIB Cable, double-shielded, 79 in (200 cm)</td>
</tr>
<tr>
<td>012-A230-xx</td>
<td>Master/Slave Cable Set for connecting two Mainframes; set of 4 SMA cables, 51 cm, 50 Ω (174-1427-xx), and set of 2 BNC cables, 46 cm (012-0076-xx)</td>
</tr>
<tr>
<td>012-A231-xx</td>
<td>Master/Slave Cable Set for connecting three Mainframes; set of 6 SMA cables, 51 cm, 50 Ω (174-1427-xx) and set of 3 BNC cables, 46 cm (012-0076-xx)</td>
</tr>
</tbody>
</table>

BNC Cables 50 Ω

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>012-0076-xx</td>
<td>18 in. (46 cm)</td>
</tr>
<tr>
<td>012-1342-xx</td>
<td>24 in. (61 cm)</td>
</tr>
<tr>
<td>012-0057-xx</td>
<td>42 in. (107 cm)</td>
</tr>
<tr>
<td>012-1256-xx</td>
<td>With shield, 98 in. (250 cm)</td>
</tr>
</tbody>
</table>

SMA Cables 50 Ω

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>174-1364-xx</td>
<td>12 in (30 cm)</td>
</tr>
<tr>
<td>174-1427-xx</td>
<td>20 in. (51 cm)</td>
</tr>
<tr>
<td>174-1341-xx</td>
<td>39 in. (100 cm)</td>
</tr>
<tr>
<td>174-1428-xx</td>
<td>60 in. (152 cm)</td>
</tr>
</tbody>
</table>

Delay SMA Cables 50 Ω

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>015-1019-xx</td>
<td>1 ns (male to female)</td>
</tr>
<tr>
<td>015-0560-xx</td>
<td>2 ns</td>
</tr>
<tr>
<td>015-1005-xx</td>
<td>2 ns (male to female)</td>
</tr>
<tr>
<td>015-0561-xx</td>
<td>5 ns</td>
</tr>
<tr>
<td>015-1006-xx</td>
<td>5 ns (male to female)</td>
</tr>
</tbody>
</table>

Adapters and Connectors

<table>
<thead>
<tr>
<th>Part number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>015-0671-xx</td>
<td>SMB - BNC adapter</td>
</tr>
<tr>
<td>015-0554-xx</td>
<td>50 Ω SMA (male) - BNC (female) Adapter</td>
</tr>
<tr>
<td>015-0572-xx</td>
<td>50 Ω SMA (female) - BNC (male) Adapter</td>
</tr>
<tr>
<td>015-0369-xx</td>
<td>50 Ω N (male) - SMA (male) Adapter</td>
</tr>
<tr>
<td>015-0549-xx</td>
<td>50 Ω SMA Adapter (male - female), DC to 18 GHz, VSWR: 1.2</td>
</tr>
<tr>
<td>015-0553-xx</td>
<td>50 Ω SMA Adapter (slide on type female - male), DC to 18 GHz, VSWR: 1.05 + 0.002F (GHz)</td>
</tr>
<tr>
<td>015-1016-xx</td>
<td>50 Ω SMA T-Connector (male - female/female)</td>
</tr>
<tr>
<td>015-0565-xx</td>
<td>50 Ω SMA Divider (female/female/female), 6 dB, DC to 18 GHz, VSWR: 1.9</td>
</tr>
</tbody>
</table>

Contact Tektronix:

ASEAN / Australasia (65) 6356 3900
Austria 0800 2255 4835*
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium 0800 2255 4835*
Brazil +55 (11) 3759 7627
Canada 1 800 833 9200
Central East Europe and the Baltics +41 52 675 3777
Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401
Finland +41 52 675 3777
France 08000 2255 4835*
Germany 0800 2255 4835*
Hong Kong 400 620 5635
India 000 800 650 1835
Italy 0800 2255 4835*
Japan 81 (3) 6714 3010

Luxembourg +41 52 675 3777
Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90
Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands 08000 2255 4835*
Norway 800 16098
People’s Republic of China 400 620 5635
Poland +41 52 675 3777
Portugal 80 08 12370
Republic of Korea 010 800 8255 2835
Russia & CIS +7 (495) 7484900
South Africa +41 52 675 3777
Spain 0800 2255 4835*
Sweden 0800 2255 4835*
Switzerland 08000 2255 4835*
Taiwan 886 (2) 2722 9622
United Kingdom & Ireland 08000 2255 4835*
USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

Updated 10 February 2011

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

02 Oct 2011 86W-16679-7

www.tektronix.com