

HP 89441A dc to 2.65 GHz Vector Signal Analyzer

Technical Data

Specifications describe warranted performance over the temperature range of 0° to 55° C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics identified as "typical" or "characteristic," provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30° C.

When enabled, automatic calibrations are periodically performed to compensate for the effects of temperature and time sensitivities. During the calibration, no signals >0 dBm should be connected to the front panel inputs.

Definitions

Baseband = dc to 10 MHz measurements.

Baseband time = Time-domain measurements selected by setting start frequency to exactly 0 Hz or choosing full span in 0 to 10 MHz measurements.

dBc = dB relative to input signal level.

dBfs = dB relative to full scale amplitude range setting. Full scale is approximately 2 dB below ADC overload.

Analog demodulation mode = Measurements with AM, PM, and FM demodulation capabilities.

FS or fs = Full scale; synonymous with amplitude range or input range.

RBW = Resolution bandwidth.

 $\mathbf{RF} = 2 \text{ MHz to } 2.65 \text{ GHz}$ measurements.

Scalar mode = Measurements with only frequency-domain analysis available. Frequency spans up to 2648 MHz.

SNR = Signal to noise ratio.

Vector mode = Measurements with frequency- and time-domain capabilities. Frequency spans up to 10 MHz in baseband, and 7 MHz for RF analysis (8 MHz with option AYH).

Zoom time = Time-domain measurements selected by setting frequency parameters using center frequency and span values.

Standard Features

Frequency

dc to 2.650 GHz 51 to 3201 points Center frequency signal-tracking

Instrument modes

Scalar (frequency-domain only) Vector (amplitude and phase information in frequency- and time-domain and also time-gating) Analog demodulation (AM/FM/PM)

Sweep types Continuous

Single

Triggering

Free run Input channel IF channel Internal source HP-IB Trigger holdoff Averaging Video Video exponential Time

Time exponential Source types

CW Random noise

Input

One channel Second 10 MHz input channel (optional) Auto-ranging (baseband only) Overload indicators $50/75/1M \Omega$ BNC (dc to 10 MHz) 50 Ω Type-N, 75 Ω with minimum-loss pad (2 MHz to 2650 MHz)

Resolution/window shapes

1-3-10 bandwidth steps Arbitrary RBW Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning (high frequency resolution), Uniform Detectors: normal, positive peak, sample

Time capture

channel)

Imaginary part

Log/linear x-axis

Group delay

Frequency response,

second 10 MHz input

Instantaneous spectrum

coherence, cross spectrum,

and cross correlation (with

Measurement data

Spectrum PSD Main time Gate time Math function Data register Auto correlation

Data format

Log magnitude Linear magnitude Phase (wrap or unwrap) Real part

Trace math

Manual

- External External arm Programmable polarity and level Pre and post delay
- Peak hold Simultaneous display of instantaneous and average spectrum

Periodic chirp Arbitrary (up to 8192 points)

External HP-IB disk

Display

1, 2, or 4 grids

Auto-scaling

Graticule on/off Data label blanking

X-axis scaling

left, minimum

Offset markers

Disk devices

frequency, stop frequency

peak/average statistics

MS-DOS[®] formats)

Memory and data-storage

Nonvolatile RAM disk (100 Kbyte)

Volatile RAM disk (up to 1 Mbyte)

Couple markers between traces

Markers

External monitor

Color (user definable)

User trace title and information

1 to 4 traces displayed (single or overlay)

Instrument/Measurement state displays

Marker search: Peak, next peak, next peak right, next peak

Marker to: Center frequency, reference level, start

power (frequency, time, or demodulation results),

Marker functions: Peak track, frequency counter, band

Disk format and file delete, rename, and copy Nonvolatile clock with time/date Save/recall of: Trace data, instrument states, trace math functions, HP Instrument BASIC programs, time-capture

90 mm (3.5-inch) 1.44 Mbyte flexible disk (HP LIF or

buffers

Online help

Hard copy output HP-IB/HPGL plotters HP-IB/RS-232/parallel printers Plot to file Time stamp Single-plot spooling Interfaces HP-IB (IEEE 488.1 and 488.2) External reference in/out External PC-style keyboard Active probe power RS-232 (one port) Centronics LAN and second HP-IB (optional) Standard data format utilities **Optional features** HP Instrument BASIC (option 1C2) Vector modulation analysis (option AYA) Digital video modulation analysis (option AYH) Waterfall and spectrogram (option AYB) Extended RAM and additional I/O (option UFG) Advanced LAN support (option UG7)

Adaptive Equalization (option AYH or AYJ)

RF

RF specifications apply with the receiver mode set to "RF section (2-2650 MHz)."

Frequency	
Frequency tuning	
Frequency range	$2~\mathrm{MHz}$ to $2650~\mathrm{MHz}$
Frequency span	
Scalar mode Vector mode	1 Hz to 2648 MHz 1 Hz to 7 MHz (8 MHz with option AYH)
Center frequency tuning resolution	0.001 Hz
Number of frequency points/span	51 to 3201
Signal track (when enable measured signal at the cer	, , ,

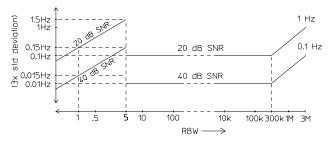
Frequency accuracy (with standard high-precision frequency reference)

Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy	$\pm 0.1 \text{ ppm}$
Aging	$\pm0.015\mathrm{ppm/month}$
Temperature drift	±0.005 ppm (0° to 55°C)

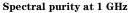
Frequency counter

The frequency counter operates in scalar or vector mode.


Frequency counter accuracy

Total accuracy is the sum of the frequency counter's basic accuracy and the instrument's frequency accuracy.

Conditions/Exceptions:


Signal-to-noise ratio within resolution bandwidth, 20 dB minimum

Marker within 1/2 resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth < 5 Hz

Frequency counter basic accuracy

~			
Stability (spectral purity) (with standard high-precision frequency reference or equivalent			
with ≥ 5 dBm level)	1		
Phase noise (absolute and	l residual)		
$F_{in} \le 200 \text{ MHz}$			
100 Hz offset	<- 103 dBc/Hz		
1 kHz offset	<- 112 dBc/Hz		
$\geq 10 \text{ kHz offset}$	<– 116 dBc/Hz		
$200 \text{ MHz} \le F_{\text{in}} \le 1 \text{ GHz}$			
100 Hz offset 1 kHz offset	<- 96 dBc/Hz <- 104 dBc/Hz		
$\geq 10 \text{ kHz offset}$	<- 104 dBc/Hz		
$1 \text{ GHz} \le F_{\text{in}} \le 2650 \text{ MHz}$			
100 Hz offset	<- 87 dBc/Hz		
1 kHz offset	<- 97 dBc/Hz		
$\geq 10 \text{ kHz offset}$	<- 116 dBc/Hz		
LO spurious sidebands			
Offset > 1 kHz	<- 75 dBc		
Offset $\leq 1 \text{ kHz}$. 70 JD -		
$f_{in} \le 2 \text{ GHz}$ $f_{in} > 2 \text{ GHz}$	<- 70 dBc <- 68 dBc		
-90			
	ations		
-110			
dBc/Hz			
-120			
-130 -124 dE	3c/Hz typical z, 10 kHz offset		
-140 L L L L L L L L L L L L L L L L L L L	10 kHz 100 kHz 1 MHz		
Offset Frequency			
Spectral purity at 1 GHz	. ,		

Resolution bandwidth

Range 312.5 µHz to 3 MHz in 1, 3, 10 sequence or arbitrary user-definable bandwidth

Note: In scalar mode, the minimum resolution bandwidth is $312.5 \,\mu\text{Hz}$ and the maximum resolution bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth is a function of span only.

Window	Selectivity	· Passband	Sideband
		flatness	level
Flat-top	2.45:1	+ 0, -0.01 dB	– 95 dBc
Gaussian-top	4.0:1	+ 0, -0.68 dB	$-125\mathrm{dBc}$
Hanning	9.1:1	+ 0, – 1.5 dB	$-32 \mathrm{dBc}$
Uniform	716:1	+ 0, - 4 dB	– 13 dBc

 \dagger Shape factor or ratio of - 60 dB to - 3 dB bandwidths.

Amplitude

Input range	
Input range	– 50 dBm to + 25 dBm (5 dB steps)
Maximum safe input	power
Average continuous power	+ 25 dBm (300 mW)
DC voltage	25 V
A/D overload level (typical)	> 1.5 dB above range
Input port	
Input channels VSWR	1
Range ≥– 20 dBm Range ≤– 25 dBm	1.6:1 (12.7 dB return loss) 1.8:1 (11 dB return loss)
Impedance	$50~\Omega~(75~\Omega$ with minimum-loss pad option 1D7)
Connector	Type-N
Input channels VSWR Range ≥– 20 dBm	1.6:1 (12.7 dB return loss)

Amplitude accuracy

Accuracy specifications apply with flat-top window selected.

Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy (with signal level equal to range)

	20° - 30°C	0° - $55^{\circ}C$
≥–25 dBm range	$\pm 1 dB$	$\pm 2 \ dB$
	(0.5 dB typical)	
≤– 30 dBm range	$\pm 1.5 \text{ dB}$	$\pm 3 \mathrm{dB}$
	(0.5 dB typical)	

Amplitude linearity

0 to – 30 dBfs	< 0.10 dB
– 30 to – 50 dBfs	$< 0.15 \mathrm{dB}$
– 50 to – 70 dBfs	< 0.20 dB

In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity.

Vector mode frequency response ± 0.4 dB (relative to the center frequency)

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

≥–25 dBm range	<- 75 dBc
≤–30 dBm range	<- 54 dBc
Third-order intermodulation	<- 75 dBc
distortion (with two input tones at	
6 dB below full scale and \geq 10 MHz)	

General spurious (with input signal level equal to range and input frequency ≤ 2650 MHz)

For spans ≤ 1.5 MHz and for	<- 75 dBc	
offset frequencies ≤ 1.5 MHz		
from input signal		
For all spans and offsets	<- 70 dBc †	
Residual responses (50 Ω input)	<- 80 dBfs	
Input noise density (50 Ω input, vector mode or		

scalar mode with sample detector) ‡

	20° - 30°C	0° - 55°C
≥–25 dBm range	<- 115 dBfs/Hz	<-112 dBfs/Hz
≤– 30 dBm range	<-110 dBfs/Hz	$<\!\!-109$ dBfs/Hz
Sensitivity‡		
– 50 dBm range	<- 160 dBm/Hz	<- 159 dBm/Hz

† <- 60 dBc for RF (2-2650 MHz)-wide (option AYH) ‡ Add 4 dB for RF (2-2650 MHz)-wide (option AYH)

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear $\pm 5 \deg$ phase (relative to best fit line with peak signal level within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = 1/(k*span(Hz)) [second]; where k = 1.28 for zoom time.

Main time length = (number of frequency points -1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (for a sine wave in the measurement passband, time-domain calibrations on, range ≥ -25 dBm)

20° - 30°C	\pm 12% full scale
	(±6% typical)
0° - 55°C	$\pm 26\%$ full scale

Sample error rate for zoom time (typical)

Error threshold: 10^{-8} times/sample 5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occuring in one time sample.

Analog demodula	tion	Trigger		
Demodulation specific	ations apply with	Trigger types		
demodulation mode selected and time-domain calibration on.		Scalar mode	Free run, internal source, HP-IB, external (each	
is available with PM or	ulation. Auto carrier locking FM demodulators and the		measurement step requires a separate trigger)	
function.	ed is a displayable marker	Vector mode	Free run, IF channel, internal source, HP-IB,	
Demodulator bandwid measurement span)	th (determined by selected	Pre-trigger delay range	external e (see time specifications for	
Maximum bandwidth	n 7 MHz (typical)	sample resolution)		
AM demodulation (typ	ical performance)	One channel	64 Ksamples (1 Msample	
Accuracy	$\pm 1\%$		with extended time capture,	
Dynamic range	60 dB (100%) for a pure AM	There also and a	option AY9)	
Cross demodulation	signal < 0.3% AM on an FM signal with 10 kHz modulation, 200 kHz deviation	Two channels (requires second 10 MHz input, option AY7)	32 Ksamples (0.5 Msample with extended time capture, option AY9)	
PM demodulation (typ	ical performance)	Post-trigger delay	2 Gsample	
Accuracy	$\pm 3 \text{ degrees}$	range (see time		
Dynamic range	60 dB (rad) for a pure PM signal	specifications for sample resolution)		
Cross demodulation	< 1 degree PM on an AM signal with 80% modulation	Trigger holdoff When enabled, each measurement requires two trigger events. The first event starts a holdoff timer. After the specified holdoff time, a subsequent trigger event will initiate a		
FM demodulation (typ	ical performance)			
Accuracy Dynamic range	± 1% of span 60 dB (Hz) for a pure FM			
~	signal	measurement.		
Cross demodulation	< 0.5% of span FM on an AM signal with 80% modulation	Holdoff resolution Holdoff range	2.5 μs 2.5 μs to 41 s	
		IF trigger (characteristics only)		
		trigger bandwidth is	-	
		$10^7/2^{n}$ [Hz]).	rounded to the next higher	
		Amplitude resolution		
		Amplitude ranges	+1 to – 70 dBfs. Useable range will become limited by the total integrated noise in the measurement span.	
		IF trigger hysterysis	< 4 dB	
		External trigger (posit	ive and negative slope)	
		Level accuracy	$\pm 0.5 \mathrm{V}$	
		Range Input impedance	±5V 10 kΩ (typical)	
		External arm		
		Level accuracy	$\pm 0.5 \mathrm{V}$	
		Range	$\pm 5 \mathrm{V}$	
a		Input impedance	$10 \mathrm{k}\Omega \mathrm{(typical)}$	
C - f 00				

Source (requires internal RF		Source port	
Source types † (vector mode)	CW (fixed sine), random noise, periodic chirp, arbitrary	VSWR Level ≤ – 10 dBm Impedance	1.8:1 (11 dB return loss 50 Ω (75 Ω with optiona minimum-loss pad)
Frequency		— Connector	Type-N
Range	2 MHz to 2650 MH		
Maximum offset from center frequency	3.5 MHz		
Amplitude (fixed sine source	type)		
Amplitude range Typical maximum amplitude (overdrive is available using direct numeric entry)	-40 dBm to +13 d +17 dBm	m	
Amplitude resolution	0.1 dB		
Amplitude accuracy (source le	evel≤13 dBm)		
Source amplitude accuracy i accuracy at the center freque frequency) and the IF flatnes	ency (zero offset	2	
	20° - 30°C 0° - 55°		
Absolute accuracy at the center frequency	$\pm 1.2 \text{ dB} \pm 3.5 \text{ d}$		
IF flatness (relative to center frequency)	$\pm 1 \mathrm{dB}$ $\pm 1.5 \mathrm{d}$		
IF Flatness with $ offset frequency \le 500 \text{ kHz}$	± 0.3 d		
Dynamic range (source level ≤	0 dBm)		
Harmonic distortion	<- 40 dBc		
Non-harmonic spurious (within measurement bandwidth)	<- 40 dBc		
Average noise level (for offsets > 1 MHz from the carrier and carrier frequency > 100 MHz. For offsets < 1 MHz, add the LO phase noise.)	<- 120 dBc/Hz		
Crosstalk (source-to-receiver, source level ≤ 0 dBm)	– 80 dBfs		

 \dagger See Baseband section for random noise, periodic chirp, and arbitrary source characteristics.

Baseband

Baseband specifications apply with the receiver mode set to "IF section (0-10 MHz)" or "RF section (0-10 MHz)" unless noted otherwise. Specifications noted as "IF section only" apply with the receiver mode set to "IF section (0-10 MHz)" and the input signal connected directly to the IF section's channel 1 or channel 2 input.

Frequency

Frequency tuning (characteristic only)		
Frequency range	dc to 10 MHz	
Frequency span	$1.0\mathrm{Hz}\mathrm{to}10\mathrm{MHz}$	
Center frequency tuning resolution	$0.001 \mathrm{Hz}$	
Number of frequency points/span	51 to 3201	
Signal track (when enabled) keeps the largest		
measured signal at the center frequency.		

Frequency accuracy

Same as the RF specifications.

Frequency counter

Same as the RF specifications.

Stability (spectral purity)

Absolute and residual phase noise, $F_{in} = 10 \text{ MHz}$ (with standard high precision frequency reference or equivalent)

100 Hz offset	<-106 dBc/Hz
1 kHz offset	<-110 dBc/Hz
≥10 kHz offset	<- 120 dBc/Hz

Phase noise decreases with decreasing input

frequency by $20 \log_{10} \left| \frac{F_{in}}{10 MHz} \right| dB.$

Resolution bandwidth

Same as the RF specifications.

Amplitude

Input range (characteristic only)(2 dB steps)			
$50 \ \Omega$ input	-30 dBm to $+24$ dBm		
75Ω input	– 31.761 dBm to +22.239 dBm		
$1 \ M\Omega$ input	– 30 dBm to + 28 dBm		
(referenced to 50Ω)			
Maximum safe input j	power		
50 Ω/ $75 $ Ω input	+ 27 dBm		
$1 \ \mathrm{M}\Omega$ input	20 V peak		

Auto-ranging (characteristic only)

Up-only, up-down, single, off

Input port

Input channels	1 (second 10 MHz input channel optional)
Return loss (IF section	n only)
50 Ω input 75 Ω input	> 25 dB > 20 dB
Coupling	dc/ac (ac coupling attenuation < 3 dB at 3 Hz)
Input Impedance (IF section only) Connector	50/75 Ω , 1 M $\Omega \pm 2\%$ (< 80 pF shunt capacitance) BNC (RF section: Type-N)

Amplitude accuracy

Accuracy specifications apply with flat-top window selected.

Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

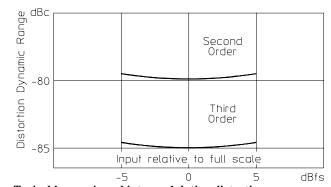
Absolute full-scale ± 0.5 dB accuracy (IF section only, with signal level equal to range)

Amplitude linearity	7
---------------------	---

0 to - 30 dBfs	< 0.10 dB
– 30 to – 50 dBfs	< 0.15 dB
-50 to -70 dBfs	< 0.20 dB
Residual dc (50Ω)	<-25 dBfs

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.


Harmonic distortion (with a single full scale signal at the input)

 2nd
 <- 75 dBc (- 80 dBc typical)</td>

 3rd, 4th, 5th
 <- 75 dBc (- 85 dBc typical)</td>

Intermodulation distortion (with two input tones at 6 dB below full scale)

Second-order	<- 75 dBc (- 80 dBc typical)
Third-order	<-75 dBc (-85 dBc typical)

Typical harmonic and intermodulation distortion

Residual (spurious) responses (IF section only) $(50 \ \Omega \text{ input} \text{ and front panel connections to RF}$ section disconnected)

Frequencies < 1 MHz	$<\!\!-75\mathrm{dBfs}$ or $<\!\!-100\mathrm{dBm}$
	whichever is greater
$Frequencies \ge 1 MHz$	<- 80 dBfs
Alias responses (for a	<- 80 dBfs
single out-of-band	
tone at full scale)	

Input noise density $(50 \Omega \text{ input, vector mode or scalar mode with sample detector})$

1 kHz to 40 kHz	<- 101 dBfs/Hz
40 kHz to 10 MHz	<- 114 dBfs/Hz
	(– 118 dBfs/Hz typical)

Sensitivity (-30 dBm range, 50Ω input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz 40 kHz to 10 MHz	<– 131 dBm/Hz <– 144 dBm/Hz
40 KHZ to 10 MHZ	(– 148 dBm/Hz typical)
Crosstalk	<- 85 dBfs
(source-to-input or	

channel-to-channel, 50Ω terminations)

Phase	(vector	mode)
-------	---------	-------

Phase specifications apply with flat-top window selected.

Deviation from linear phase $\pm 5 \text{ deg}$ (relative to best fit line with peak signal level within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = 1/(k*span(Hz)) [second]; where k = 1.28 for zoom time, 2.56 for baseband time measurements.

Main time length = (number of frequency points -1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy± 5% full scale(IF section only)(for a sinewave in the measurementpassband, time-domaincalibrations on)

Sample error rate for zoom time (typical)

Error threshold: 10^{-8} times/sample 5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occuring in one time sample.

Analog channel-to-channel < 1 ns time skew (IF section only) (time-domain calibrations on, both channels on the same range) < 1 ns

Analog demodulation

Same as RF analog demodulation specifications except as noted below.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 10 MHz (typical)

Two-channel

The second 10 MHz input channel (option AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one or to a demodulated signal on the RF input.

Channel match ± 0.25 dB, ± 2.0 deg

(IF section only, at the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.)

Trigger

Same as RF trigger specifications with the following additional specifications.

Input channel trigger (positive and negative slope)

Level accuracy	$\pm 10\%$ full scale
Range	$\pm110\%fullscale$
Resolution	Full scale/116 (typical)

Source (with output filter on)

Source types

Scalar mode	CW (fixed sine), arbitrary	
Vector mode	CW, random noise, period	lic chirp,
	arbitrary	
Random noise source % of energy in-band $> 70\%$		
$(\text{Span} = 10 \text{ MHz/2}^{\text{N}}, \text{N} = 1 \text{ to } 24)$		
Periodic chirp so	urce % of energy in-band	> 85%

Frequency Frequency range dc to 10 MHz Frequency resolution $25 \,\mu Hz$ Amplitude Source level CW and $-110 \text{ dBm to} + 23.979 \text{ dBm} (50 \Omega),$ random noise 5.0 Vpk maximum $-110 \text{ dBm to} + 19.542 \text{ dBm} (50 \Omega),$ Periodic chirp and arbitrary 3.0 Vpk maximum DC offset ± 3.42 V maximum (resolution and range of programmable dc offset is dependent on source amplitude) Amplitude accuracy (50 Ω , fixed sine) (IF section only) -46 dBm to + 24 dBm $\pm 1.0 \text{ dB}$ $\pm 2.0 \text{ dB}$ – 56 dBm to – 46 dBm Harmonic and other spurious products (fixed sine, 0 V dc offset) dc to 10 kHz <- 55 dBc 10 kHz to 5 MHz <- 40 dBc 5 MHz to 10 MHz <- 33 dBc Source port Return loss (IF section only) $> 20 \, dB$ Source impedance $50/75 \Omega$

Arbitrary source characteristics

The arbitrary source repetitively outputs data stored in a data register. The data register may contain a single time record or, with option AYB, a trace buffer. The time length of the register depends on the time-sample resolution for the span entered when the data register was saved or created. See time specifications for time-sample resolution details.

Arbitrary source length Single time record	Up to 4096 complex or 8192 real points.
Trace buffer (requires option AYB)	Up to 16,384 real or complex points. Some configurations allow up to 32,768 real or complex points (see the <i>Operator's Guide</i> for details)

General

Safety and environmental		Physical		
Safety standards	CSA Certified for Electronic Test and	Weight	IF section RF section	25 kg (55 lb) 25 kg (55 lb)
	Measurement	Dimensions		
This product is designed	Equipment per CSA C22.2, No. 231	IF section	Height Width	230 mm (9.1 in) 426 mm (16.7 in)
for compliance to	UL1244 and IEC348, 1978		Depth	530 mm (20.9 in)
Acoustics LpA < 55 dB typical at 25°C ambient	LpA < 55 dB typical at	RF section	Height Width Depth	173 mm (6.8 in) 419 mm (16.5 in) 495 mm (19.5 in)
	fan to reduce noise	Real time b	andwidth (cha	racteristics only)
m (output)	Real-time band	lwidth is the max	imum frequency
Temperature		-	be continually ana	
Operating Internal disk operations Storage (no disk in drive)	0° to 55°C 4° to 40°C – 20° to 65°C	Frequency spa auto-coupled r	ne segment of the ns of 10 ⁷ /2 ⁿ Hz, a resolution bandwi ace with calculatio	rbitrary dth, markers off,
Humidity, non-condensing	g 10% to 90% at 40°C	one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.		
Operating				
Internal disk operations Storage (no disk in drive)	20% to 80% at 30°C 10% to 90% at 40°C	Averaging of		70 105 1 11
Altitude		Single-channel (log magnitude		78.125 kHz, 48 updates/second
Operating (above 2285 m (7,500 ft), derate operating temperature	4600 m (15,000 ft)	measurement	-	io uputteo second
by – 3.6°C/1000 m (– 1.1°C/1000 ft))			nd 10 MHz input	39.0625 kHz, 48 updates/second
Storage	4600 m (15,000 ft)	channel, optio		
Calibration interval	1 year	magnitude frequency response measurement data, 801 frequency points, averaging off)		
Warm-up time	30 minutes			
Power requirements				
115 VAC operation				
IF section	90 - 140 Vrms, 47 - 440 Hz			
RF section	90 - 140 Vrms, 47 - 63 Hz			
230 VAC operation	198 - 264 Vrms, 47 - 63 Hz			
Maximum power dissipation				
IF section RF section	750 VA 275 VA			
IEC 801-3 (Radiated Immu				

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

Averaging

Single-channel vector mode averaging (log magnitude spectrum measurement data, 1601 frequency points, channel 2 off)

Fast average	78.125 kHz
Displayed	78.125 kHz,
	48 updates/second

Two-channel vector mode averaging (requires second 10 MHz input channel, option AY7) (Log magnitude frequency response measurement data, 801 frequency points)

Fast average	39.0625 kHz
Displayed	39.0625 kHz,
	48 updates/second

Demodulation

Single-channel analog demodulation mode (log magnitude spectrum measurement data, 1601 frequency points, time cal off, channel 2 off, averaging off)

AM demodulation19.53125 kHzFM or PM demodulation9.765625 kHz

Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calculations off on other traces, log magnitude spectrum, frequency spans of $10^7/2^n$ Hz): 60/second

Averaging (characteristics only)

Number of averages	1 to 99,999
Overlap averaging	0% to 99.99%
Average types	
Scalar mode	rms (video), rms (video) exponential, peak hold
Vector mode	rms (video), rms (video) exponential, time, time exponential, peak hold

Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data; gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details.

Gate length

Maximum: Main time length

Minimum: Approximately window shape \div (0.3 × span (Hz)) [seconds]; where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

Window	WS	Minimum gate length
Flat-top	3.819	$1.328125\mu s$
Gaussian-top	2.215	781.25 ns
Hanning	1.5	546.875 ns
Uniform	1.0	390.625 ns

Time-capture (characteristics only)

Direct capture of input waveforms can be accomplished with spans of $10 \text{ MHz}/2^n \text{ Hz}$. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (option AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

Band power marker (characteristics only)

Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and C/N_o within the selected portion of the data.

Peak/Average Statistics

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured time(AYA), IQ reference time (AYA), and math functions involving these trace types. Average power and peak statistics are computed using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed Results	average power peak power peak/average ratio number of samples
Peak Percent	90% – 99.99%. Setting can be changed at any time during or after the measurement.
Signal characteristics	
Peak power	+ 13 dB relative to average
range	power of the first time record
Average power range	± 3 dB relative to average power of the first time record.

istic only)
One to four traces on one, two, or four grids or a quad display
On-line help text, view state
User-definable palette
401
titles and information
Allows expanded views of portions of the trace information
Data or full display
± 5 mm referenced to bezel opening
$105 \pm 5 \text{ mm}$
$147 \pm 5 \text{ mm}$
180.6 mm (7.1 in)

Status indicators

Overload, half range, external trigger, source on/off, trigger, pause, active trace, remote, talk, listen, SRQ.

External PC-style keyboard interface

Compatible with PC-style 101-key keyboard, such as the HP C1405B with HP C1405-60015 adapter.

HP 89441A Technical Data General

Interfaces (characteristics only)		
Active probe power	+15 Vdc, – 13 Vdc; 150 mA maximum, compatible with HP active probes	
Sync out	Active low TTL level signal synchronous with source output of periodic chirps and arbitrary blocks up to 8192 samples.	
External reference in/out IF section		
External reference input	Locks to a 1, 2, 5, or 10 MHz (± 10 ppm) with a level > 0 dBm	
External reference output	Output the same frequency as the external reference input at a level of > 0 dBm into a 50 Ω load.	
External reference in/out RF section		
External reference input	Locks to a 1, 2, 5, or 10 MHz (\pm 10 ppm) with a level > 0 dBm (use \geq 5 dBm for optimum phase poise	

	> 0 ubin (usc ≥ 0 ubin 101
	optimum phase noise
	performance).
External	Outputs 10 MHz at > 0 dBm
reference output	(+6 dBm typical) into a 50 Ω
	load.

HP-IB

Implementation of IEEE Std 488.1 and 488.2 SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C1, C2, C3, C12, E2

Benchmark characteristics (typical transfer rate of 401 frequency-point traces)

Scalar Vector	25 traces/second 20 traces/second
RS-232	Serial port (9-pin) for connection to printer
Centronics	Parallel port for connection to a printer

External monitor output

Format	Analog plug-compatible with 25.5 kHz multi-sync monitors
Impedance	75 Ω
Level	0 to 0.7 V
Display rate	60 Hz
Horizontal refresh	25.5 kHz
rate	
Horizontal lines	400
Optional interfaces	
Option UFG includes	the following interfaces
Second HP-IB	Implementation of IEEE
	Std 488.1 and 488.2
LAN	ThinLAN BNC

Peripherals

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and HP-IB graphics printers and plotters. Printers supported include the HP LaserJet, HP PaintJet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plotting a single display.

Memory and data storage **Trace math** Operands measurement data, data register, Disk devices constant, other trace math functions, jw Nonvolatile RAM disk 100 Kbyte Operations +, -, *, /, cross correlation, conjugate, Volatile RAM disk 1 Mbyte that can be magnitude, phase, real, imaginary, partitioned between square root, FFT, inverse FFT, natural measurement. logarithm, exponential HP Instrument BASIC Trace math can be used to manipulate data on each program space and RAM. measurement. Uses include user-units correction Volatile RAM also and normalization. supports memory of waterfalls and **Marker functions** spectrograms with option AYB. Peak signal track, frequency counter, band power, Internal 90 mm (3.5-inch) 1.44 Mbyte peak/average statistics. flexible disk (HP LIF or MS-DOS[®] formats) Standard data format utilities External disk **HP-IB** interface Included on two 90 mm (3.5-inch) 1.44 Mbyte flexible disks and two 130 mm (5.25-inch) 1.2 Mbyte Disk format and file delete, rename and copy floppy disks. The utilities run in MS-DOS® 2.1 or Nonvolatile clock with time/date greater on an IBM PC (AT or higher) or compatible. Save/recall can be used to store trace data, The utilities include conversions to standard data instrument states, trace math functions, format (SDF), PC displays of data and instrument HP Instrument BASIC programs, and time-capture state information, and utilities for conversion to buffers. PC-MATLAB, MATRIX_x, data set 58 and ACSII Benchmarks (typical disk space requirements for formats. different file types) Trace data (401 points) 6.2 Kbyte Instrument state 12.3 Kbyte Trace math 2 Kbyte **Time-capture buffers** 271 Kbyte (32 Ksamples) Optional extended RAM Option UFG includes 4 Mbyte additional RAM for expanding the volatile

RAM capabilities listed

earlier.

Options

Vector Modulation Analysis — Option AYA

Supported modulation formats

The vector modulation analysis option supports both single modulated carriers and separate baseband I-Q signals. The optional second 10 MHz input channel is required for baseband I and Q analysis.

Carrier types	Continuous and pulsed/burst (such as TDMA)
Modulation formats	2 level FSK (including GFSK) 4 level FSK MSK (including GMSK) QAM implementations of: BPSK, QPSK, OQPSK, DQPSK, π /4DQPSK, 8PSK, 16QAM, 32QAM
Default parameter settings †	NADC, PDC (JDC), GSM, PHS, DECT, CDPD, TETRA, CDMA Base, CDMA Mobile

Filtering

All filters are computed to 20 symbols in length

	-
Filter types	Raised cosine Square-root raised cosine IS-95 compatible Gaussian None Rectangular Low pass
User-selectable filter parameters	Alpha/BT continuously adjustable from 0.05 to 10
User-defined filters	User-defined impulse response, fixed 20 points/symbol Maximum 20 symbols in length or 401 points

Frequency and symbol rate

Receiver mode	Information bandwidth
ch1 + j*ch2	$\leq 20 \text{ MHz}$ ‡
0 - 10 MHz	$\leq 10 \text{ MHz}$
2 - 2650 MHz	$\leq 7 \text{ MHz}$
2 - $2650~\mathrm{MHz}$ - wide	≤ 8 MHz (option AYH only)
External	≤ 8 MHz (HP 89411A only)

†NADC and CDMA preset settings require option UFG.

 \ddagger Two-channel measurements such as ch1 + j*ch2 require option AY7 second 10 MHz input channel.

Symbol Rate

Symbol Rate is limited only by the information bandwidth

$$Symbol Rate = \frac{Bits_{Second}}{Bits_{Symbol}}.$$

Where bits/symbol is determined by the modulation type. Example: For the raised-cosine filter

 $Max\,SymbolRate \leq \frac{Information\,Bandwidth}{1 + \alpha}.$

l ts (formats other than FSK)		
reset, 50 kHz span, result length		
/symbol. IQ envelope triggering ation off.		
>2 per second (characteristic only)		
Time, spectrum		
(Filtered, carrier locked, symbol locked)		
Time, spectrum		
(Ideal, computed from detected symbols)		
Magnitude, phase		
(I-Q measured vs. reference)		
Time, spectrum		
(Vector error of computed vs. reference)		
Error vector magnitude is		
computed at symbol times only		
lts (FSK)		
Time, spectrum		

FSK measured	Time, spectrum
FSK reference	Time, spectrum
Carrier error	Magnitude
FSK error	Time, spectrum

Display formats

The following trace formats are available for measured data and computed ideal reference data, with complete marker and scaling capabilities and automatic grid line adjustment to ideal symbol or constellation states.

Polar diagrams

Constellation: Samples displayed only at symbol times

Vector: Display of trajectory between symbol times with 1 to 20 points/symbol

Ι	or	Q	vs	time
---	----	---	----	------

Eye diagrams: Adjustable from 0.1 to 10 symbols Trellis diagrams: Adjustable from 0.1 to 10 symbols

Continuous error vector magnitude vs. time

Continuous I or Q vs. time

Error summary (formats other than FSK)

Measured rms and peak values of the following: Error vector magnitude Magnitude error Phase error Frequency error (carrier offset frequency) I-Q offset Amplitude droop (formats other than QAM) SNR (QAM formats)

Error summary (FSK)

Measured rms and peak values of the following: FSK error Magnitude error Carrier offset frequency Deviation

Detected bits (symbol table)

Binary bits are displayed and grouped by symbols. Multiple pages can be scrolled for viewing large data blocks.

Symbol marker (current symbol shown as inverse video) is coupled to measurement trace displays to identify states with corresponding bits. For formats other than FSK and MSK, bits are user-definable for absolute states or differential transitions. Note: Synchronization words are required to resolve carrier phase ambiguity on non-differential modulation formats.

Accuracy (formats other than FSK and IS-95 CDMA)

Conditions: Specifications apply from 20° to 30°C, for a full-scale signal fully contained in the selected measurement span, random data sequence, instrument receiver mode of IF 0-10 MHz or RF 2-2650 MHz, range ≥ -25 dBm, start frequency $\geq 15\%$ of span, $alpha/BT \ge 0.3$ †, and symbol rate ≥ 1 kHz. For symbol rates less than 1 kHz, accuracy may be limited by phase noise.

Residual errors (result length = 150 symbols, averages = 10)

Error vector magnitude

Freq span $\leq 100 \text{ kHz}$	$0.3\%\mathrm{rms}$
$Freq span \le 1 MHz$	$0.5\%\mathrm{rms}$
Freq span > 1 MHz	$1.0\%\mathrm{rms}$

 $\dagger 0.3 \leq alpha \leq 0.7$ for Offset QPSK

Magnitude error	
Freq span ≤ 100 kHz	0.3 % rms
$Freq span \le 1 MHz$	$0.5\%\mathrm{rms}$
Freq span > 1 MHz	1.0 % rms
Phase error (For modulation symbol amplitudes.)	n formats with equal
Freq span ≤ 100 kHz	0.17°rms
$Freq span \le 1 MHz$	0.34°rms
Freq span > 1 MHz	0.57°rms
Frequency error	Symbol rate/500,000
(Added to frequency accu	racy if applicable.)
Origin/I-Q Offset	– 60 dB

Accuracy (2 FSK and 4 FSK)

Residual errors, typical

4 FSK or 2 FSK, symbol rate = 3.2 kHz, deviation = 4.8 kHz, instrument receiver mode of IF 0-10 MHz or RF 2-2650 MHz, 50 kHz span, full-scale signal, range ≥ -25 dBm, result length = 150, averages = 10, tenth-order Bessel filtering with 3 dB bandwidth = 3.9 kHz. ‡

FSK error	$0.5\%\mathrm{rms}$
Magnitude error	0.3 % rms
Deviation	± 0.3 % rms (14 Hz)
Carrier frequency offset	$\pm0.3\%$ of deviation
(Added to frequency	
accuracy if applicable)	

DECT preset (2 FSK, symbol rate = 1.152 MHz, BT = 0.5) 288 kHz deviation, instrument receiver mode of IF 0-10 MHz or RF 2-2650 MHz, 4 MHz span, full-scale signal, result length = 150, averages = 10.

FSK error Magnitude error	1.5 % rms 1.0 % rms
Deviation	$\pm 1.0\%$ rms (2.88 kHz)
Carrier frequency offset (Added to frequency	$\pm0.5\%$ of deviation
accuracy if applicable)	

‡ Note: For error analysis, a Gaussian reference filter with BT = 1.22 is used to approximate the tenth-order Bessel filter.

Accuracy (IS-95 CDMA)

CDMA Base or CDMA Mobile preset, instrument mode of IF (0 – 10 MHz) or RF (2 – 2650 MHz), 2.6 MHz span, full scale signal, result length=200, averages=10.

Residual Errors

Error vector magnitude	1% rms	
Magnitude error	1% rms	
Phase error	0.57° rms	
Frequency error	10 Hz	
(Added to frequency accuracy if applicable.)		
Origin I/Q offset	– 60 dB	

Signal Acquisition

Note: Signal acquisition does not require an external carrier or symbol clock

Data block length

Adjustable up to 1024 samples (4096 samples with extended RAM option UFG). Examples (with option UFG): 4096 symbols at 1 point/symbol; 409 samples at 10 points/symbol.

Internally generated

Symbol clock

Carrier lock	Internally locked
--------------	-------------------

Triggering

Single/continuous External Internal source Pulse search (searches data block for beginning of TDMA burst, and performs analysis over selected

burst length)

Data synchronization

User-selected synchronization words Arbitrary bit patterns up to 30 symbols long, at any position in a continuous or TDMA burst and measurement result. Up to 6 words can be defined.

Arbitrary waveform source

RAM-based arbitrary waveforms

•	
Waveform registers Waveform length	Maximum 6 4096 Complex points each (16,384 with option AYB)
Residual accuracy, typ	ical
Examples π/4DQPSK, 24.3 ksymbols/second,	$EVM \le 0.7\% rms$
α = 0.35 GMSK, 270.833 ksymbols/second,	$EVM \le 1.0\% \ rms$

Digital Video Modulation Analysis — **Option AYH** (requires option AYA)

This option extends the capabilities of the vector modulation analysis option AYA by adding modulation formats used for digital video transmission. Except where noted, all of the standard capabilities of option AYA are provided for the new modulation formats.

Supported modulation formats

Additional modulation formats

8 and 16VSB 16, 32, 64 and 256QAM 16, 32, and 64QAM (differentially encoded per DVB standard)

Frequency span

BT = 0.30

The (2–2650 MHz)-wide receiver mode increases the maximum allowable vector frequency span to 8 MHz. Specifications for this mode are in the RF specification section.

Maximum symbol rate

Option AYH analyzes vector modulated signals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor (α) of the input signal, according to:

 $Max\,SymbolRate \leq \frac{Information\,Bandwidth}{1 + \alpha}$

(Note: the maximum symbol rate is doubled for VSB signals.)

Information bandwidth
$\leq 20 \text{ MHz} \ddagger$
$\leq 10 \text{ MHz}$
$\leq 7 \; MHz$
$\leq 8 \text{ MHz}$
$\leq 10 \text{ MHz} \ddagger$

Example: For a 64QAM signal ($\alpha = 0.15$), the maximum symbol rate for the (2-2650 MHz)-wide receiver is 8 MHz/(1.15) = 6.96 Msymbols/second.

Measurement results and display formats.

Identical to option AYA measurement results and display formats except for the following changes to the error summary display:

VSB pilot level is shown, in dB relative to nominal. For VSB formats, SNR is calculated from the real part of the error vector only.

For DVB formats, EVM is calculated without removing IQ offset.

Accuracy

Residual errors (typical)

8VSB or 16VSB, symbol rate = 10.762 MHz, $\alpha = 0.115$, instrument receiver mode of IF 0-10 MHz or RF 2-2650 MHz, 7 MHz span, full-scale signal, range ≥ -25 dBm, result length = 800, averages = 10.

Residual EVM $\leq 1.5\%$ (SNR ≥ 36 dB)

16, 32, 64 or 256 QAM, symbol rate = 6.9 MHz, $\alpha = 0.15$, instrument receiver mode of IF 0-10 MHz or RF 2-2650 MHz-wide, 8 MHz span, full-scale signal, range ≥ -25 dBm, result length = 800, averages = 10.

Residual EVM $\leq 1.0\%$ (SNR ≥ 40 dB)

† Downconverter dependent.

Filtering

All option AYA filter types are supported except user-defined filters for VSB analysis. Filters are calculated to 40 symbols in length.

Triggering and Synchronization

All option AYA signal acquisition features are supported except pulse and sync word search for VSB analysis.

Adaptive Equalization — Option AYH or Option AYJ (AYJ adds adaptive equalization to option AYA)

This option equalizes the digitally-modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized.

Equalizer

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate. Filter length 3–99 symbols, adjustable

Filter taps 1,2,4,5,10, or 20 taps/symbol

Measurement results

Equalizer impulse response Channel frequency response

Supported modulation formats

MSK, BPSK, QPSK, OQPSK, DQPSK, $\pi/4DQPSK,$ 8 PSK, 16 QAM, 32 QAM, 64 QAM, 256 QAM, 8 VSB, 16 VSB

Waterfall and Option AYB	Spectrogram —
Waterfall	
Types	Vertical and skewed " Azimuth adjustable 0 to ± 45 Normal and hidden line With or without baseline.
Adjustable parameters	Trace height Buffer depth Elevation Threshold
Spectrogram	
Types	Color, normal and reversed Monochrome, normal and reversed User color maps (2 total)
Adjustable parameters	Number of colors Enhancement (color-amplitude weighting) Threshold

Trace select

When a waterfall or spectrogram measurement is paused or completed, any trace in the trace buffer can be selected by trace number or by z-axis value. The marker values and marker functions apply to the selected trace.

Z-axis value

The z-axis value is the time the trace data was acquired relative to the start of the measurement. The z-axis value of the selected trace is displayed as part of the marker readout.

Display update rate 30 to 60/second, typical

System memory (characteristic only)

Note: In standard configuration, the analyzer has approximately 1-2 Mbytes of free memory for these displays. Option UFG adds 4 Mbytes of free memory.

Memory required (characteristic only)

Displays occupy memory at the rate of 175 traces/Mbyte (for traces of 401 frequency points).

A full screen of 307 traces will require 2.25 Mbytes of free memory.

With option UFG, the analyzer will typically accommodate more than 1000 traces in memory.

MS-DOS is a US registered trademark of Microsoft Corporation. Matlab is a product of The Math Works. Matrix_x is a product of Integrated Systems Inc.

4 Mbytes Extended RAM and Additional I/O — Option UFG

Extended RAM

Extended memory type: 4 Mbytes dynamic RAM

Available memory with option UFG installed: Approximately 6 Mbytes, user-allocatable to measurement memory, RAM disk and IBASIC program space.

LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP

LAN interface: ThinLAN (BNC connector) or AUI Recommended MAU: HP 28685B (10base-T) or HP 28683A (FDDI)

Program interface: Send and receive HP-IB programming codes, status bytes and measurement results in ASCII and/or binary format.

HP-IB I/O

Secondary HP-IB port: Per IEEE Std 488.1 and 488.2

Functions: Controller-only; accessible from IBASIC program or front panel commands.

Note: Option UFG is strongly recommended for use with option AYA Vector Modulation Analysis and option AYB Waterfall and Spectrogram.

Advanced LAN Support — Option UG7

Remote X11 display (characteristic only)

Update rate: > 20 per second, depending on workstation performance and LAN activity.

X11 R4 compatible

X-terminals, UNIX workstations, PC with X-server software

Display: 640×480 pixel minimum resolution required; 1024×768 recommended.

FTP data (characteristic only)

Traces A, B, C, D Data registers D1-D6 Time capture buffer Disk files (RAM, NVRAM, floppy disk) Analyzer display plot/print Note: Option UG7 requires option UFG.

> Data subject to change. Copyright © 1994-1996 Hewlett-Packard Co. Printed in the U.S.A. 11/96 5965-5425E