Ripple Current Tester

Model 11800/11801/11810

KEY FEATURES

- Digital constant current output and constant peak voltage output control function
- Four terminal contact test jig design, ensure accurate monitoring of voltage dropped on capacitors under test (patent pending)
- Paired cooper-foil wiring test cable to reduce voltage drop on the current driving loop and to ensure accurate monitoring of ac level dropped on capacitors under test (patent pending)
- 0-500 V DC bias voltage source, 0.3% basic accuracy
- 0.01~30A, 100Hz/120Hz/400Hz/1kHz AC ripple current source, (\pm 0.5% reading+0.1% of range) basic accuracy (Model 11800)
- 0.01~10A, 20kHz~100kHz AC ripple current source, 2% basic accuracy (Model 11801)
- 0.03~10A, 20kHz~1MHz AC ripple current source (Model 11810)
- Monitoring software (option) for multiple **Ripple Current Testers**
- Lower power consumption and lower electricity cost
- Large LCD display (320 x 240 dot-matrix)
- Alarm for indicating of normal or abnormal test termination, Tested time will be recorded if the test is terminated abnormally. An automatic discharge is always performed after test termination
- Standard RS485 interface is provided for computer monitoring
- Optional 20-fixtures Series or Parallel test jigs
- Digital timer inside
- CE marking (Model 11800/11801)

The Chroma 11800/11801/11810 Ripple Current Tester is a precision tester designed for electrolytic capacitors load life testing. Provides constant ripple current output and constant peak voltage (Vpeak = Vdc + Vac_peak) output digital control function. Let load life testing for electrolytic capacitors becomes easier and more reliable. And, The Chroma 11800/11801/11810 use excellent output amplifier design technology to reduce power consumption and internal temperature rising. For long time testing requirement, it can reduce electricity cost and perform high stability. The Chroma 11800/11801/11810 is a just right test solution for electrolytic quality evaluation.

Model 11801

A118029 : SMD Series Test Fixture for Low Voltage

1916 B.B.S.	10128.

A118010 : Monitoring Software	for	11801/	/11800
-------------------------------	-----	--------	--------

SPECIFICATIONS								
Model		11800	11801	11810				
Ripple Current Source								
Current Output Range		0.01~30A	0.01~10A	0.03~10A, *3				
Frequency		100Hz/120Hz/400Hz/ 1kHz ±0.1%	20kHz~100kHz	20kHz~1MHz				
	0.030A~0.199A		± (3% + 0.005 A)	0.03~0.30A,				
Accuracy	Accuracy $0.20A \sim 1.99A + (0.5\% \text{ of real})$	\pm (0.5% of reading \pm	$\pm (2.5\% + 0.05 \text{ A})$	±(3%+0.01 A), *2				
*1	2.0A~10A	0.1% of range)	± (2% + 0.2 A)	0.40~10.0A, ±(2% + 0.05 A), *2				
	10.0A~30A							
Ripple Vol Range	tage Output	90Vrms / 10Arms, 30Vrms / 30Arms	15Vrms maximum					
DC Bias Vo	ltage Source							
Voltage O	utput Range	DC 0 ~ 500V, ± (0.3% + 0.05V)						
Charge Cu	rrent	200mA, 40W Maximum						
Signal Mo	nitor Parameter	Accuracy						
	0.001A~0.199A		± (2% + 0.005 A)	0.030A~0.399A:				
Irms	0.20A~1.99A	\pm (0.5% of reading + 0.1% of range)	± (2% + 0.05 A)	±(3%+0.01A),*2, *3				
(Ripple Current)	2.0A~10A		\pm (2% + 0.2 A)	0.400A~10.00A: ±(2% +0.05A),*2, *3				
	10.0A~30A		-	-				
Vpeak (Normally capacitor	, set to rated voltage)	to Vpeak =Vdc + Vac_peak						
Vdc (DC Bi	as Voltage)	$\pm (0.3\% + 0.05V)$						
Vrms (Ripple Voltage)		$0 \sim 1.99V, \pm (0.3\% \text{ of}$ reading + 0.5% of range) 2.00~19.99V, $\pm (0.3\% \text{ of}$ reading + 0.1% of range) 20.00V~200.0V, $\pm (0.3\% \text{ of reading +}$ 0.1% of range)	± (1% + 0.005V)	土 (1% + 0.01V) *2				
Control Fu	Inction							
Timer		1 min~10000 hour, 30min error per year						
Interface	RS-485 (Standard)							
Display		320 X 240 dot-matrix LCD display		lay				
Operation								
Protection OCP, OTP, Over Load								
Power Consumption		3000 V/A max 700 V/A max 1000 V/A max						
Power Reg	Jwei Consumption Jood VA max. 700 VA max. 1000 VA max. ower Requirement 220V/ac ± 10%/48 Hz ~62 Hz 220V/ac ± 10%/48 Hz ~62 Hz 220V/ac ± 10%/48 Hz ~62 Hz			7				
Dimension	(H x W x D)	221.5 x 440 x 609.8 mm / 8 72 x 17 32 x 24 01 inch	353.6 x 440 x 609.8 mm /	 221.5 x 440 x 609.8 mm / 8 72 x 17 32 x 24 01 inch				
Weight		54 kg / 118.94 lbs	60 kg / 132.16 lbs	40 kg / 88 lbs				
neight		5+ kg / 110.5+ lb5	00 kg / 152.10 lb3	TO Kg / 00 105				

Note*1:23 \pm 5°C

Note*2: Multiple accuracy for test frequency 20~100kHz (x 1), 101~500kHz (x 2.5), 501kHz~1MHz (x 5) Note*3: Frequency > 500kHz: 0.10~10.0A only Note*4: Frequency > 500kHz: 0.100~10.00A only

- 11810: Ripple Current Tester 1MHz
- A118004 : Series Test Fixture

ORDERING INFORMATION

A118005 : Parallel Test Fixture

A118010 : Monitoring Software for

- Model 11800/11801
- A118028 : Series Test Fixture for Low Voltage A118029 : SMD Series Test Fixture for Low Voltage A118030 : PCB for SMD Capacitor

State of the second sec	and the second s	and the second
1000 (1000 ())))) ())) ())) ()		
10 10 1 1 10 10 10 10 10 10 10 10 10 10	100000000000000000000000000000000000000	and the A law states
1月1日間に	ENGINEE'L	191280
1041, 44(1-1- 49		10-0 - 10-14 Tax 10 - 1
Manual Contents		100 (00 1 (00 100)) 100 (00 10 10 1